

#### **Music Understanding**

- Music Understanding: Recognition of Pattern and Structure in Music
- Surface structure:
  - Pitch Loudness
  - Harmony Notes
  - Deep structure:
    - Phrase relationships
    - Score following
    - Emotion
    - Expressive performance

# Accompaniment Video

#### Video online at https:// www.cs.cmu.edu/~rbd/videos.html

#### **Computer Accompaniment**



4

#### **Vocal Accompaniment**

- Lorin Grubb's Ph.D. (CMU CSD)
- Machine learning used to:
  - Learns what kinds of tempo variation are likely
  - Characterize sensors
    - When is a notated G sensed as a G#?
- Machine learning necessary for good performance





## Vocal Accompaniment

# Video online at https:// www.cs.cmu.edu/~rbd/videos.html







## Jazz Style Recognition



#### **Onset Detection**





#### Why?

- Beat Detection
- Tempo Detection
- Computer Accompaniment
- Music Transcription
  - Query-By-Humming
- Automatic Intelligent Audio Editor

#### Intelligent Audio Editor

This excerpt is included in the audio examples:



Before:





After:

#### Some Approaches

#### Features and Thresholds

- High Frequency
- Phase Change
- Neural Networks
  - Hierarchical Models
- HMM



A Bootstrap Method for Training an Accurate Audio Segmenter

> Ning Hu and Roger B. Dannenberg Carnegie Mellon University

#### Introduction

- Audio segmentation is one of the major topics in MIR research:
  - HMM approach (Raphael, 1999)
  - Neural Network approach (Marolt, et al., 2002)
  - Support Vector Machine (Lu, et al. 2001)
  - Hierarchical Model (Kapanci and Pfeffer, 2004)
- In many cases, collecting training data is time-consuming and expensive.







MIDI - Beethoven Symphony No5 Mvt1 - All Piano> Time(s)

#### Audio Alignment Concepts

- Score
  - Midi File, Note List, not necessarily "real" notation
- Similarity Matrix
- Chroma Vectors
- Distance/Similarity Function
- Research on accurate alignment



## Segmentation and Alignment

- Segmentation, audio alignment, and score-following are related
  - Rely on acoustic features
  - Precise alignment to symbolic score provides segmentation data
- We use alignment data to train a segmenter
  - Alignment avoids gross errors in segmentation
  - Segmenter learns fine-grain features that improve precision beyond initial alignment
  - $\blacksquare \rightarrow$  high quality segmentation and alignment

#### Motivation

- We need very accurate segmentation to extract trumpet envelopes (attacks ~30ms) (for research on capturing synthesis models) Alignment is based on chroma (100 – 250ms) Orio & Schwarz (2001) also use DTW and short-term features (5.8 ms windows), but alignment (an  $O(N^2)$  algorithm) is slow. Our system performs alignment 25x faster.
- Our small non-DTW analysis windows can use different features.



### Acoustic Features for Segmentation – 5.8 ms window

Log energy (dB)

- F0 with SNDAN's (Beauchamp) MQ analysis
- Relative strengths of first 3 harmonics:

Amplitude<sub>i</sub> / Amplitude<sub>overall</sub>

Relative frequency deviations, first 3 harmonics:

 $\blacksquare (f_i - i \times F0) / f_i$ 

Zero-crossing rate
Derivatives of all of the above

#### **Neural Network**



## Segment boundary PDF



- Gaussians
- On alignment boundaries
- Width based on alignment window size
- P=0.04 between boundaries

#### **Bootstrap learning process**

- Multiply neural net output by PDF
- For each neighborhood around a segment boundary, find the peak  $\rightarrow$  "adjusted onset"
- Retrain the neural network:
  - adjusted onsets are 1, other points are 0





| <u>ں</u> | Model                     | Miss Rate | Spurious Rate | Av. Error | STD   |
|----------|---------------------------|-----------|---------------|-----------|-------|
| 뷔        | Baseline<br>Segmenter     | 8.8%      | 10.3%         | 21 ms     | 29 ms |
| SYN      | Segmenter<br>w/ Bootstrap | 0.0%      | 0.3%          | 10 ms     | 14 ms |

| REAL | Model                     | Miss Rate | Spurious Rate | Av. Error | STD   |
|------|---------------------------|-----------|---------------|-----------|-------|
|      | Baseline<br>Segmenter     | 15.0%     | 25.0%         | 35 ms     | 48 ms |
|      | Segmenter<br>w/ Bootstrap | 2.0%      | 4.0%          | 8 ms      | 12 ms |

#### Sound Examples

Input



Output – segmenter was trained on similar data using the bootstrap method. This input was segmented without using any score information.



#### Conclusions

- Supervised learning often wins over hand-crafted systems
- Segmentation training data is expensive, so supervised training is difficult
- Alignment provides strong hints, but not accurate enough for training
- Bootstrapping allows segmenter to generate its own training data
- Dramatic improvements in accuracy, even when tested without alignment "hints"



#### Summary

- Computer Accompaniment
- Offline Score Alignment
- Onset Detection