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Music Understanding

n Music Understanding: Recognition of Pattern 
and Structure in Music

n Surface structure: 
n Pitch – Loudness
n Harmony – Notes

n Deep structure:
n Phrase relationships
n Score following
n Emotion
n Expressive performance
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Accompaniment Video

© 2015 Roger B. Dannenberg Oct 2015Oct 2015

Video online at https://
www.cs.cmu.edu/~rbd/videos.html
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Computer Accompaniment
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Vocal Accompaniment

n Lorin Grubb’s Ph.D. (CMU CSD)
n Machine learning used to:

n Learns what kinds of tempo variation are likely
n Characterize sensors

n When is a notated G sensed as a G#?
n Machine learning

necessary for good
performance
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Vocal Accompaniment
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Video online at https://
www.cs.cmu.edu/~rbd/videos.html
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How It Works
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Listening to Jazz Styles

? Lyrical

Pointilistic

Syncopated

Frantic
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Jazz Style Recognition
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Video online at https://
www.cs.cmu.edu/~rbd/videos.html#research
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Onset Detection
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Why?

n Beat Detection
n Tempo Detection
n Computer Accompaniment
n Music Transcription

n Query-By-Humming
n Automatic Intelligent Audio Editor
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Intelligent Audio Editor

n This excerpt is included in the audio examples:

n Before: After:
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Some Approaches

n Features and Thresholds
n High Frequency
n Phase Change

n Neural Networks
n Hierarchical Models
n HMM
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A Bootstrap Method for 
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Introduction

n Audio segmentation is one of the major topics 
in MIR research:
n HMM approach (Raphael, 1999)
n Neural Network approach (Marolt, et al., 2002)
n Support Vector Machine (Lu, et al. 2001)
n Hierarchical Model (Kapanci and Pfeffer, 

2004)
n In many cases, collecting training data is 

time-consuming and expensive.
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Detour - Audio Alignment
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Audio Alignment Concepts

n "Score"
n Midi File, Note List, not necessarily "real" 

notation
n Similarity Matrix
n Chroma Vectors
n Distance/Similarity Function
n Research on accurate alignment
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Chromagram Representation

Spectrum

Linear frequency to log frequency:
"Semi vector": one bin per semitone

Projection to pitch classes: "Chroma vector"
C1+C2+C3+C4+C5+C6+C7,
C#1+C#2+C#3+C#4+C#5+C#6+C#7, etc.

"Distance Function": Euclidean, Cosine, etc.
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Segmentation and Alignment

n Segmentation, audio alignment, and score-following 
are related
n Rely on acoustic features
n Precise alignment to symbolic score provides 

segmentation data
n We use alignment data to train a segmenter

n Alignment avoids gross errors in segmentation
n Segmenter learns fine-grain features that improve 

precision beyond initial alignment
n ® high quality segmentation and alignment
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Motivation

n We need very accurate segmentation to 
extract trumpet envelopes (attacks ~30ms)
n (for research on capturing synthesis models)

n Alignment is based on chroma (100 – 250ms)
n Orio & Schwarz (2001) also use DTW and 

short-term features (5.8 ms windows), but 
alignment (an O(N2) algorithm) is slow.
n Our system performs alignment 25x faster.

n Our small non-DTW analysis windows can 
use different features.
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Audio-to-(MIDI)-Score Alignment

n Chromagram features from Audio
n Synthetic chromagram features for MIDI
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Acoustic Features for 
Segmentation – 5.8 ms window

n Log energy (dB)
n F0 with SNDAN’s (Beauchamp) MQ analysis
n Relative strengths of first 3 harmonics:

n Amplitudei / Amplitudeoverall

n Relative frequency deviations, first 3 
harmonics:
n (fi−i×F0) / fi

n Zero-crossing rate
n Derivatives of all of the above
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Neural Network
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Segment boundary PDF

n Gaussians
n On alignment 

boundaries
n Width based on 

alignment 
window size

n P=0.04 between 
boundaries
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Bootstrap learning process

n Multiply neural net output by PDF
n For each neighborhood around a segment 

boundary, find the peak ® “adjusted onset”
n Retrain the neural network: 

n adjusted onsets are 1, other points are 0
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Results

Model
Baseline
Segmenter
Segmenter
w/ Bootstrap

Miss Rate

8.8%

0.0%

Spurious Rate

10.3%

0.3%

Av. Error

21 ms

10 ms

STD

29 ms

14 ms

Model
Baseline
Segmenter
Segmenter
w/ Bootstrap

Miss Rate

15.0%

2.0%

Spurious Rate

25.0%

4.0%

Av. Error

35 ms

8 ms

STD

48 ms

12 ms
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Sound Examples

n Input

n Output – segmenter was trained on similar 
data using the bootstrap method. This input 
was segmented without using any score 
information.
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Conclusions

n Supervised learning often wins over hand-crafted 
systems

n Segmentation training data is expensive, so 
supervised training is difficult

n Alignment provides strong hints, but not accurate 
enough for training

n Bootstrapping allows segmenter to generate its own 
training data

n Dramatic improvements in accuracy, even when 
tested without alignment “hints”
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Summary

n Computer Accompaniment
n Offline Score Alignment
n Onset Detection
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