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My primary research interest is in statistical pattern recognition in general,
and speech recognition in general; more specifically, I am especially interested in
the emerging subfield of distant speech recognition (DSR), wherein it cannot be
assumed that the microphone used for speech capture is directly adjacent to the
speaker’s mouth; rather, the microphone might be located several meters away
from the mouth. This topic is of interest to me, because solving it requires the
solution of several problems not encountered in conventional speech recognition,
including dealing with the effects of noise, reverberation, and competing speech.
The DSR problem is also necessarily interdisciplinary, and shares elements with
statistical pattern recognition, digital signal processing, finite-state automata
theory, and natural language processing.

My first exposure to DSR came while I worked at BBN Technologies in
Cambridge, MA. From 1993 to 1997. My initial work involved implmementing
algorithms for unsupervised speaker adaptation, whereby the characteristics of
a given speaker’s voice are learned, typically in an unsupervised fashion. I also
developed techniques for applying speaker adaptation techniques during param-
eter estimation for hidden Markov models. In the Fall of 1997, I entered the
graduate program in the Johns Hopkins University at the Center for Language
and Speech Processing; my advisor was Fred Jelinek. At JHU, I continued to
work primarily on speaker adaptation algorithms, for which I was awarded a
Ph.D. degree in April, 2000.

From January, 2000 I took a job as a postdoctoral researcher at the Uni-
versity of Karlsruhe in Karlsruhe, Germany. In 2002 I attended the ICASSP
conference in Orlando, FL and bought the book Optimum Array Processing by
Harry Van Trees, which had only recently been published. Although well over
one thousand pages in length, the word “microphone”—to my knowledge—does
not appear even a single time in that work. Nonetheless, Optimum Array Pro-
cessing, along with a compilation of research papers published earlier, inspired
me to begin working on applying microphone arrays to speech recognition. To-
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gether with a professor from the electrical engineering department, I set out
to teach a course about exactly this topic, Microphone Arrays: Gateway to
Hands-Free Speech Recognition. Admittedly, the first time we taught the course,
of which I held the vast majority of the lectures, I was reduced to essentially
repeating what was written in Prof. Van Tree’s big book. Nonetheless, the stu-
dents reacted positively, and several of them later came to work at our lab; their
work eventually resulted in several research papers that we were able to publish
in international journals and conference proceedings. After a few years of work-
ing in the field, I acquired a relatively good understanding of what portions of
the traditional array processing literature are useful for acoustic array process-
ing, and which not so much. I found this to be a very rewarding experience;
because I found several good students through the process of holding a course,
I didn’t at all rue the time spent in preparing lectures, homework assignments,
and mid-terms; rather, I viewed it as a prudent investment.

In 2004 I became involved in the CHIL, Computers in the Human Interaction
Loop, project at the University of Karlsruhe. This project was ideal as a means
of exercising the skill set I had been developing for the past couple of years,
as it took as its goal the construction of “smart rooms” or “interactive spaces”
that had the capacity to understand speech and spontaneously assist human
users in interacting with other users. As part of our project work, we collected
several substantial corpora of far-field speech data, which were then used for
DSR experiments among other things. We used these corpora both within the
project, but also eventually shared it with the US National Institute of Standards
and Technology (NIST) for their use in a series of annual technology evaluations.
NIST subsequently provided the data to other top research sites including LIMSI
in Paris, France, IBM Watson Research Center in Yorktown Heights, NY, the
University of Edinburgh in Edinburgh, UK, and Carnegie Mellon University in
Pittsburgh, PA.

Some of the most promising techniques to have come out of our research in-
volve the use of the non-Gaussian properties of human speech for beamforming,
which by definition is the combination of all signals coming from a microphone
array so as to focus on the desired speech of a speaker, while suppressing un-
wanted speech, noise and reverberation. When examined in either the time for
frequency domain, it becomes readily apparent that speech is not Gaussian, but
highly super-Gaussian; this implies that its probability density function (pdf)
has a great deal of mass centered around the mean and in the tails of the distri-
bution, but relatively little mass in the intermediate regions. Due to the central
limit theorem, when speech is corrupted by noise, reverberation or the speech of
a competing speaker, the resulting pdf begins to approach that of a Gaussian.
My students and I discovered by that combining the signals from a microphone
array so as to restore the statistical characteristics of the original, uncorrupted
speech, a class of algorithms can be obtained that yields DSR performance that
is superior to any conventional beamforming techniques.

More recently, we have become interested in beamforming algorithms for
spherical microphone arrays. The latter are of interest because they provide
a directional sensitivity pattern whose shape is not altered when the direction
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of interest is changed. The theory behind spherical microphone arrays is quite
interesting, in that mastering requires learning something about room acoustics;
hence, we’ve recently been actively reading about this field. In support of a book
chapter we are preparing, we plan to report the results of a set of experiments
that directly compares DSR performance for a conventional, linear array, with
that of a spherical array. We actually now have several publications going back
half a dozen years comparing beamforming algorithms in terms of word error
rate (WER), which at times has caused a few raised eyebrows; beamforming
performance is typically measured in terms of signal-to-noise ratio (SNR). We
have found, however, that SNR does not correlate well with WER; if the latter
is what is wanted, it makes no sense to measure the former.

Several other supporting technologies may also be required to build a com-
plete DSR system. For reasons of computational efficiency and speed of con-
vergence, beamforming is typically applied in the frequency or subband domain;
hence, digital filter banks are required for performing subband analysis and—
subsequent to beamforming—resynthesis. As I learned after some time working
the field, the type of filter bank best suited to adaptive filtering and beamform-
ing is very different from the filter banks used for data coding and compression,
in that the former cannot be based on the notion of aliasing cancellation as a the
latter often are. Prior to the effective application of beamforming, it is necessary
to either know or robustly estimate the position of the desired speaker. Speaker
tracking is typically performed with some variant of a Kalman or Bayesian fil-
ter, often using time delays of arrival (TDOAs) as input observations; over the
years, we’ve developed several such speaker tracking systems. Moreover, if a
DSR system is intended to interact with a speaker as opposed to simply recog-
nizing his or her speech, it must provide for a “barge-in” capability; this in turn
implies that some sort of acoustic echo cancellation (AEC) must also be present
to suppress the system’s voice prompt in the captured speech. In recent work,
we’ve compared AEC performance based on the conventional normalized least
mean squares (NLMS) algorithm, with more sophisticated techniques based on
a Kalman filter. We’ve found that the normal, covariance form of the Kalman
filter works better than the NLMS algorithm, but that the information form of
the Kalman filter works better still. The latter fact stems from the fact that a
regularization term can readily be applied to the information filter in order to
control the growth of the subband filter coffificients, and thereby obtain better
robustness.

All of the above deals almost exclusively with the signal processing aspects
of distant speech recognition; but the problem of actually finding a word se-
quence that best matches the acoustics must also be addressed. In considering
this problem, I’ve found the most intellectually satisfying body of techniques
to be those based on the theory of weighted finite-state transducers (WFSTs).
This set of techniques was derived from the conventional techniques for ma-
nipulation of finite-state automata (FSAs), such as set intersection and power
set construction. The conventional automata are generalized through the in-
clusion of a weight on each arc along with the usual input symbol, where the
weight can be an output symbol, a real value representing a probability, or the
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Cartesian product of both. Such structures are useful for speech recognition be-
cause all of the structures required for the latter can be represented as WFSTs,
which can then be combined through weighted composition—the analog of set
intersection—then optimized through weighted determinization—the analog of
power set construction. To obtain further reductions in run-time, the weights
can be pushed towards the start node, then the result can be processed with
standard FSA minimization after encoding the input symbol, output symbol
and weight on each arc as a single symbol.

My work during the CHIL project on acoustic array processing was in many
ways a defining event in my career, because largely on the basis of that expe-
rience I was able to assemble enough material to co-author the book Distant
Speech Recognition (DSR) with a former student; this book was published in
April, 2009 by Wiley. DSR represents the culmination of everything I’ve learned
about this topic after working in the field for nearly 20 years. At some point,
I hope to publish a second edition of DSR to report on everything I’ve learned
since it’s original appearance, as well as what I’ve learned by using DSR as a
text book at both Karlsruhe and Saarland University; at Saarland University,
I’ve used DSR as the text for both an eponymous course, as well as second
course entitled Weighted Finite-State Transducers in Speech and Natural Lan-
guage Processing.

Let me summarize by saying that my interest in DSR is motivated also by
the tremendous variety of applications that would be made possible by such
technology; to name only a few:

• Speech-enabled video games;

• Co-operative robots;

• Car navigation and information systems.

• Smart houses and home entertainment systems.

Building DSR systems that are sufficiently robust and capable to work reliably
in such applications is not a problem that will be solved in two or even five
years. Nonetheless, these are applications of current interest in both academia
and industry.
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