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Abstract—This paper addresses a problem that is of paramount
importance in solving crimes wherein voice may be key evidence,
or the only evidence: that of describing the perpetrator. The
term Forensic anthropometry from voice refers to the deduction
of the speaker’s physical dimensions from voice. There are
multiple studies in the literature that approach this problem
in different ways, many of which depend on the availability of
sufficient volumes of speech for analysis. However, in the case
of many voice-based crimes, the voice evidence available may
be limited. In such cases it is especially advantageous to regard
the recorded signal as comprising multiple pieces of evidence. In
this paper, we show how this can be done. We explain why,
for any anthropometric measurement from speech, it makes
sense to consider the contributions of each articulatory-phonetic
unit independently of others, and to aggregate the deductions
from them only in the aftermath. This approach is based on
the hypothesis that the relative evidence given by different
compositional units of speech can be more indicative of the
anthropometric factor being deduced, than the evidence derived
from the aggregate voice signal. We explain the applicability of
this approach through experiments on standard speech databases.

I. INTRODUCTION

Voice-based crimes comprise a significant fraction of crimes
committed in the world today. Such crimes include those in
which voice may be key evidence (such as a security camera
video footage of a store robbery where the perpetrator may
be masked but may demand something of the victims), and
those in which voice is the only evidence. Examples of the
latter include crimes committed over phone or internet, such
as harassment, blackmail, threats, ransom demands in kidnap-
pings, impersonation with intention to defraud in banking and
other scenarios, voice-based phishing, hoax emergency calls,
false reporting such as bomb threats in public areas, “swatting”
calls to the police etc. All of these and more included in
this category of crimes are often faced with the investigative
challenge of finding the perpetrator(s) through the analysis of
the voice evidence.

Forensic analysis of voice for this purpose benefits from a
multitude of studies in different areas of science that study
voice. These have demonstrated that the human voice carries
a wealth of information about the speaker, including the
speaker’s physical characteristics such as height, weight, phys-
iological characteristics and age, physical and mental state of
health, social status, geographical origins etc., and a plethora
of other information including that about their immediate
physical surroundings. However, deriving such information is

currently a goal that is challenged by many scientific problems.
It is hinged on the understanding of the signatures of all
of the speaker’s personal characteristics and environmental
parameters (at the time of recording) that are embedded
in the speech signal, and using these to measure different
characteristics of the speaker.

In this context, it is important to find out what must be
done to identify the signatures alluded to above, e.g. what
feature representations might best capture different signatures,
what techniques might help identify them etc. Where our paper
becomes relevant is that in addition to all of the above, it is
also important to know where in the signal to look for such
signatures, i.e. which parts of the signal are informative and
which are not in the expression of the parameter in question
and its signature. This may be tied to the actual feature
representation(s) being used, but a framework is nevertheless
needed to specify these informative locations in the signal.
The goal of this paper is to provide such a framework.

In the forensic context, terms such as anthropometry (the
measurement of body parameters), psychometry (the mea-
surement of psychological parameters or state of mind), so-
ciometry (the measurement of social parameters) etc. refer
to the processes of deducing different categories of speaker
characteristics that may help generate a reasonable description
of the speaker and may thereby help locate him/her. To deduce
these person-descriptive parameters, our framework comprises
an approach based on considerations of the human speech
production mechanism. In this paper we primarily present the
reasoning behind, and evidence in support of, this articulatory-
phonetic approach to anthropometry.

Although some studies have used information derived from
phonemes for biometric applications, such as speaker matching
[1], the choice of specific phonemes has largely been based
on heuristic decisions. In contrast, the framework we present
outlines a generic methodology based on well-established
articulatory-phonetic guidelines, for the deduction of any
person-descriptive parameter from voice. The key elements
of our approach also involve a novel method for the sub-
phonetic segmentation of speech in order to derive features that
are compatible with this approach, and the demonstration of
useful ways to visualize, interpret and utilize the information
derived from the articulatory-phonetic categories. We build our
arguments in favor of this approach through a brief review of
the manner in which the human speech production process
relates to the speaker’s biometric parameters.



A. The speech production process and biometric parameters

The human vocal tract can be viewed as a system of
dynamically configurable resonance chambers. Voice is the
acoustic signal we hear when the mechanical vibrations of
the vocal folds transform the aerodynamic energy of the air
expelled from the lungs into acoustic energy in the form of
sound waves. This excitation signal is further modulated into
the sound patterns characteristic of speech by the physical
movements of the vocal tract. The movements change the
shape and dimensions of the various resonant chambers of
the vocal tract, causing time-varying resonance patterns in the
acoustic signal. This sequence of resonance patterns in the
acoustic signal is perceived as (often) intelligible speech by
the listener. Each distinct pattern, supported by the articulatory
configuration of the vocal tract that produces it, is considered
to be a unique compositional unit of speech, or a phoneme.

In continuous intelligible speech, the articulators are re-
quired to move continuously as the speaker forms words and
sentences. During the production of continuous speech, the
vocal tract attempts to “flow” from the canonical configuration
for one phoneme to that of the next. The resonant characteris-
tics of the phoneme-specific configurations are governed by the
dynamics of the movement between different configurations,
the degree to which the articulators achieve the canonical
configuration for any phoneme, the excitation of the vocal
tract, and all of the other articulatory and acoustic phenomena
that affect the production of the phonemes.

All of these factors are known to be influenced by the
speaker’s physical and mental (biological) factors. Anthropo-
metric characteristics such as skeletal proportions, race, height,
body size etc. largely influence the voice by playing a role in
the placement of the glottis, length of vocal cords, relative
sizes and proportions of the resonance chambers in the vocal
tract etc. When a speaker enunciates different phonemes, all
of these structures act in concert, and the final speech signal
produced carries the signatures of the specific vocal tract
proportions, movements and configurations that the speaker
is able to produce for each phoneme. Each phoneme therefore
carries some evidence of all of these characteristics, except that
the evidence is reasonably expected to be expressed differently
for each phoneme.

The advantage of this reasoning is that it can be easily
extended to apply to other categories of speaker characteristics,
such as the speaker’s mental state. Factors that relate to a
person’s mental state affect the movement and locus of the
articulator configurations. This relationship is evident from
several older studies that show that different mental states
affect the body’s muscle agility and response times, including
that of the facial muscles, and by direct association, that of
the articulators e.g [2], [3]. In one of his early expositions,
Charles Darwin noted the relationship between emotion and
specific patterns of muscle activity, particularly in the face [4].
Currently there is a large body of literature on skeletal muscle
activity associated with psychological illnesses. Examples
include muscle agility changes with anxiety and depression

[5], with personality traits [6], etc. All of these effects are
expected to carry over to the articulators. Following the same
reasoning that we apply to a speaker’s physical state, we expect
different phonemes to also carry the signatures of the speaker’s
psychological state, and to express them differently from other
phonemes.

Based on this reasoning we expect that estimates of a
speaker’s person-specific parameters may presumably be re-
covered more reliably from appropriate phoneme-specific anal-
ysis of the individual phonemes.

The rest of this paper is arranged as follows: In Section
IT we discuss some basic categorizations of speech from an
articulatory-phonetic perspective. With this in context, in Sec-
tion III we describe our approach for deriving anthropometric
evidence from speech recordings. In Section IV we present
experimental results in support of the proposed methodology.
This is followed by conclusions in Section V.

II. A REVIEW OF PHONEME CATEGORIZATIONS

Based on the commonalities and differences between the
articulator motions and configurations that produce them,
articulatory phonetics differentiates speech into phonemes,
its constituent compositional units, and further into several
categories grouped by specific articulator locations and vocal
fold activity. At the broadest level, phonemes are divided into
consonants, which include some kind of airflow obstruction
in the vocal tract, and vowels, which do not. These are briefly
described below.

A. Articulatory-phonetic categorization of consonants

Depending on the voicing, place and manner of articula-
tion, consonants are divided into several categories. These
are named based on the key articulators involved. Fig. 4
(which also doubles as a template for representing results in
the experimental section of this paper) lists these categories.
Articulators that are considered in this categorization include
the teeth, lips, hard palate, soft palate (velum), alveolar ridge,
tongue (front, back or middle/sides, i.e. apex, dorsum and
laminus respectively), uvula, glottis and pharynx. The list
of phonemes in Fig. 4 is limited to those found in North
American English, and also confined to the set of phonemes
we analyze for the work presented in this paper. Consonants
are further divided into two broad categories (not shown in
the table). These are the Obstruents, which include all Stops,
Affricates and Fricatives and are characterized by a significant
constriction or obstruction in the vocal tract; and the Sonorants
or Approximants which include the rest of the consonants, and
are characterized by a slight constriction of the vocal tract.
The key characteristics of the divisions named in Fig. 4 are
described below.

Phonemes that involve the active vibration of the vocal cords
are called Voiced phonemes, while those in which the vocal
cords do not vibrate are termed as Unvoiced. For the purpose
of this study, we focus on five categories of consonants based
on the manner of articulation: namely Plosives, Fricatives,
Affricates, Nasals, Liquids and Glides. The key characteristics



associated with each of these are: Plosives: complete stoppage
of airflow, followed by sudden release of air; Fricatives:
creation of turbulent airstream; Affricates: contain the char-
acteristics of both plosives and fricatives; Nasals: complete
airflow obstruction and release through the nose; Liquids:
airflow along the sides or top of the tongue; Glides: stricture
between the roof of the mouth and the tongue. If the stricture
occurs such that air flows along the sides of the tongue, the
glide is called a Lateral glide. If the sound is more “r”-like,
the glide is called a Rhotic glide.

Depending on where in the vocal tract these key character-
istics are generated (e.g the location of the airflow obstruction
for a Plosive), the five categories above are further divided into
the following subcategories. The articulators that are involved
are indicated in parentheses: Bilabial (both lips), Labiodental
(Lips and teeth), Interdental (upper and lower teeth), Alveolar
(alveolar ridge), Palatal (hard and soft palate), Velar (Velum)
and Glottal (glottis).

B. Articulatory-phonetic categorization of vowels

The primary difference between vowels and consonants
is that in vowels there is no constriction of airflow in the
vocal tract, whereas in consonants there is some degree of
constriction somewhere in the vocal tract. Vowels are cat-
egorized based on their height (how high the tongue is),
backness (which part of the vocal tract is pivotal in its
production), laxness (rigidness or relaxedness of configuration)
and roundedness (whether or not the lips are rounded). Fig. 5
in the experimental section of this paper shows the standard
vowel categorization for North American English.

III. PROPOSED APPROACH TO ANTHROPOMETRY

Our methodology for the recovery of anthropometric at-
tributes from voice is based on training a bank of phoneme-
based predictors for each attribute measured, selecting a subset
of them based on statistical criteria, and combining their deci-
sions for a final prediction. Such “combination-of-predictors”
approaches for the prediction of attributes are fairly standard
in many different contexts in the machine learning literature,
including multimedia processing [7] and audio processing
[8]. What is novel about our approach is the utilization of
articulatory-phonetic criteria to create the predictors in the
mixture, and the specific mechanism for locating the right
segments of speech for feature extraction. We describe this
mechanism below.

A. A case for sub-phonetic features

Over the course of an utterance, spectral patterns vary con-
tinuously as the vocal tract transitions from the configuration
for one phoneme to that for the next, often blurring the
boundaries between them, resulting in a continuous, highly
variable signal with complex, never-exactly-repeated spectral
patterns. However, since the biophysical parameters of the
speaker are manifested in every part of the speech signal,
every section of these complex, never-repeated patterns is
affected by the speaker’s current biophysical state. Due to

the complex nature of the speech signal itself, therefore, it is
often difficult to distinguish between a biophysically-affected
pattern seen in one phonetic context, and a naturally occurring
pattern in another. As a result, signal measurements based on
overall characterizations of the signal will often show weak,
or no statistical relation to the speaker’s state, although these
relations may be locally evident in different portions of the
signal.

In order to effectively characterize the expression of bio-
physical parameters on the speech signal, it therefore becomes
necessary to focus on relatively stable sound structures that so
typify the underlying phoneme that their absence or modifi-
cation may change the perceived phoneme itself. Since the
nature or state of the speaker also affects the articulation
of these structures, the effect of the speaker’s biophysical
state/parameters on their expression can be isolated with
relatively lower ambiguity than from other, more variable parts
of the speech.

Such stable structures are generally phoneme-internal or
sub-phonetic features. Candidate sub-phonetic features include
voicing-onset time (VOT) [9], voicing offsets [10], onset of
pitch, phonetic loci, etc. Indeed, each of these features is
affected by different biophysical factors. For instance it is well
known that VOT is affected by neurological disorders [11]
and age [10], anomalies in onset of pitch are characteristic
of vocal cord paralysis, formant positions in loci are related
to age, body parameters [12], vocal tract shape [13] etc.
The challenge, however, is that not all sub-phonetic features
are affected by all biophysical factors. Possibly the most
“universally” affected feature is the phonetic locus, which we
briefly describe in the following subsection.

B. An HMM-based midstate-sharing technique using entropic
regularizers for deriving stable sub-phonetic measures

As noted above, phoneme expression tends to be af-
fected both by adjacent phonetic context [14] and longer-term
prosodic and expressive trends in the speech signal. In order to
isolate our measurements of the phonemes from the variability
introduced by these contextual and longer-term effects, we
must identify regions of each phoneme that are most invariant
to context or longer-term trends.

The locus theory of phonemes states that every phoneme
has a “locus”, corresponding to a canonical arrangement of
the vocal tract for that phoneme, and that the articulators
move towards it in the production of the phoneme [15]. In
continuous speech, the loci of phonemes may not be fully
reached as the articulators move continuously from one set
of configurations to another. Fig. 1 shows an example. While
the locus theory does not explain all the variations observed
in different instantiations of a phoneme, a key, valid insight
that may be derived from it is that the interior regions of
the phoneme that are representative of the locus are much
more invariant to contextual and longer-term effects than the
boundaries. The exact interior region that represents the locus
may, however, vary with the instance of the phoneme. It need



not be at the center of the phoneme, and its position must be
carefully estimated.
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Fig. 1. The sentence ”*My name is Wintley”” spoken by an adult male.
Note the long-term spectral patterns that flow continuously across the entire
utterance while moving towards different phoneme loci in the process. The
phoneme IH is marked . It coccurs in two different phonemic contexts, and
the influences can be seen at the beginning and end of the phoneme in each
instance.

Since we wish to extract context-invariant features from the
phoneme, we must identify this central “locus” segment and
extract features from it. However, since the actual position and
duration of this segment can vary significantly within each
instance of a phoneme, actually identifying this segment is
not a trivial task, and requires a sophisticated procedure.

We employ an HMM-based automatic speech recognition
system trained using a modified version of the Baum-Welch
algorithm for this segmentation. HMM-based large vocabulary
continuous speech recognition systems model speech through
context-dependent phonetic units called triphones. Each of
these is modeled by an HMM with multiple states. As is well
known, triphones are phonemes in context, many of which may
be similar across multiple triphones. In conventional HMM-
based speech recognition systems, the states of all HMMs are
therefore tied, i.e. the state-output probability distributions of
the HMMs are shared among the triphones corresponding to
any phoneme.

The HMMs must be trained on speech data for which word-
level, although not necessarily phonetic-level transcriptions are
available. The phoneme-level (if not provided) and state-level
segmentations are automatically derived during the training
process. However, in the absence of other constraints, there
is no assurance that any of the derived states will capture
the locus regions of the phonemes; additional constraints are
required to achieve consistent locus-region segmentations.

To achieve effective segmentation of locus regions, we
incorporate additional constraints into our model. We model
each triphone using a 3-state HMM. The “boundary” states
of these models are intended to capture context-dependent
variations of the phoneme, while the central state is intended
to model the locus segments. Since the locus segments of
different instances of a phoneme are expected to be very
similar in structure (independently of context), this conformity
is enforced by making the central states of all triphones of any
phoneme share a common distribution, eliminating context-
dependencies in the model for this state. We call this a
midstate-sharing technique.

In order to minimize the variance of the distribution of this
central “locus™ state, we train the HMMs with a modified
Baum-Welch algorithm that incorporates an entropic regu-
larizer [16], which attempts to minimize the entropy of the
distribution representing the central state. The effect of this
regularization is to maximize the statistical similarity between
the feature vectors assigned to the central state of every
triphone. The details of the regularized training algorithm are
omitted here, and largely follow the developments in [16].
The CMU-sphinx speech recognition system was modified
for our experiments to include this. Figure 2 shows typical
segmentations that are achieved by the algorithm. Note the
similarity in the structure of the data in this state across the
different instances of the phoneme.

CART and MOM

/e /A \
/K223, R/ 1/ moo 1 2 3 m/

/AA/ /AA/

Fig. 2. State level segmentations for the phoneme AA in the American English
pronunciation of the word CART (K AA R T) and MOM (M AA M).

IV. EXPERIMENTS AND RESULTS

To evaluate the usefulness of the proposed approach, we
apply it the deduction of height of speakers within the widely
used and publicly available TIMIT continuous speech database
[17], and to the estimation of age from the TIDigits database
[18]. Note that our experiments are only for illustrative pur-
poses, and we did not optimize the components used in them,
such as feature types and models, to obtain the best possible
performance. Nevertheless, we point out at the outset that the
results we obtain for height are the best reported for the TIMIT
database so far. The results we obtain from TIDigits have
not been reported in the literature, and we have no points
of comparison. We therefore only state them to the extent that
they are illustrative of our procedure.

The first step in both cases was to segment the databases
into their phonemic units. For this, we used the technique
discussed in Section III-B. We used 3-state left-to-right Bakis
topology HMMs for segmentation. These were trained on 5000
hours of clean speech data from a collection of standard speech
databases in English available from the Linguistic Data Con-
sortium. The training databases were parametrized using high-
temporal-resolution MFCC vectors [19]. These were computed
over 20ms analysis frames 200 times a second, to achieve a
temporal resolution of 5ms. The trained HMMs were finally
used to derive phoneme- and state-level segmentations of the
recordings. The region of the middle state of each phoneme
HMM was then taken to represent the locus region from which
features for the deduction of height and age could be derived.



In this context, we note that the features we use for
segmentation are not necessarily the same as the features we
use to derive the anthropometric parameters of the speakers.
Once the state-level segmentations are obtained, we extract
the latter features from the central locus segment, as explained
earlier in Section III-B. For the TIMIT data, our features were
spectral features that capture resonance and fine variations in
the envelope of the spectrum, but do not capture voluntary
pitch-level detail. In this representation, we computed a 64-
point liftered periodogram using Welch’s method [20] over the
locus segment. We used a 20-point lifter; this retains envelope-
level detail in the spectrum, while smoothing out pitch-level
structure. For the TIDigits database, we extracted the first five
formants using the Burg’s method [21] from each relevant
segment.

Subsequent to the extraction of features, we followed two
strategies. In the case of TIMIT, we conducted a 10-fold cross-
validation experiment, partitioned across speakers. In each
fold, all instances of a phoneme from 90% of the speakers
were used to train a regression, which was used to predict
heights from each instance of the phoneme spoken by the
remaining 10% of speakers. The overall phoneme-specific
predicted height for any speaker was the average of the
predictions made by the individual instances of the phoneme
by that speaker.

In the case of TIDigits, the phoneme-specific predictors
were random forest regressions [22] that predict age, gender
and accent from the formant features derived from the TIDigits
sub-phonetic segments. Our experiments employed forests
with 32 trees. Increasing this number had no significant effect
on accuracy.

As described in Section II, a given speaker characteristic
may heavily influence the sub-phonetic features of some
phonemes, while not affecting others to the same degree. The
specific phonemes affected may also vary with the feature.
Accordingly, in both cases the next step was to identify the
phonemes that resulted in the most statistically significant
(P — value < 0.0001 using a t-test) predictions.

To demonstrate that the articulatory-phonetic conjectures we
present earlier in this paper indeed hold, the predictions from
the set of the most predictive phonemes were then combined
using simple weighted interpolation. The weights for any
predictor were the inverse training error standard deviations.
The weighted combination resulted in a single aggregate
prediction for the speaker. Note that in practice, for estimation
of speaker parameters from new data, the knowledge of which
phonemes are most predictive of the parameter (obtained from
a different database, such as TIMIT in this paper) can still be
effectively used in the same manner.

Figure 3 shows the Root Mean Squared Error (RMSE) of
the height predictions obtained from each phoneme. The error
ranges from 2.75 inches for the phoneme IY to 3.5 inches
for ZH. We observe that all phonemes are not equivalent in
their ability to predict height. Except for ZH (159 instances)
and UH (762) instances, all phonemes are well represented in
the set. The results are hence largely reflective of the innate
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Fig. 3. RMS Error of the predicted values of height for each phoneme.

information about speaker height encoded in the phoneme.
While not plotted here, the correlation between the predicted
height and the actual height follows the trend shown by
prediction accuracies and ranges between 0.1 (for ZH) to 0.7
(for IY). All correlation values are statistically significant with
P-values of 0.001 or better. The combined prediction from
all the phonemes with P-values less than 0.0001 achieves an
overall RMSE of 2.54 inches.

To test our original hypothesis that the predictive ability of
the phonemes varies, and reflects the articulator configuration
of the phoneme, we evaluate the R? value of the individual
phonemes, which represents how much of the variance in
the dependent variable (height) can be predicted from the
variations in the features for the phoneme. Phonemes with
greater R? are more predictive of height. Fig. 5 shows the ten
vowels with the greatest ability to predict height, color coded
to show the rank ordering. Fig. 4 shows the top ten consonants.

We note that the phonemes that predict height best cluster
closely in terms of articulator configurations. In particular,
front vowels, and velar, alveolar and palatal consonants, all
of which capture the acoustics of the back of the vocal tract,
which relates more to body size, are seen to have the highest
ability to predict height. Combining the predictions of just
these phonemes results in an overall RMSE of 2.48 inches,
which is among the best reported results for this data set [10].

Manner of

Place of articulation

articulation Voicing

Labio- Inter-
Bilabial dental dental Alveolar Palatal Velar Glottal

Stop Voiced b d g

Unvoiced p t k
Fricative  Voiced v dh z zh

Unvoiced f th s sh hh
Affricate  Voiced jh

Unvoiced ch
Nasal Voiced m n ng
Liquid(L) Voiced “
Liquid(R) Voiced r
Glide Voiced w w

Fig. 4. Classification of consonants based on the involvement of different parts
of the vocal tract (place of articulation) and the manner of their movements
(presence of absence of voicing, and the manner or articulation). This figure
also shows consonants with the highest R? value for height. Shades of
decreasing color intensities (black to light grey) depict decreasing R2.

Note that the final combination was done only in the case
of height estimation with TIMIT. We present the TIDigits case
for illustration of the same technique for age prediction. Fig.
6 shows the capacity of the different phoneme to predict age,
accent and gender from the TIDigits database. Of these, we
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Fig. 5. Vowels in American English, modified from [23] to represent the
specific vowels modeled by by the CMU Sphinx ASR system [24] used in
our experiments. There are four additional phonemes used in our ASR system.
These are the three Diphthongs: ay as in side, aw as in how and oy as in foy,
and the semivowel er as in surround. This figure also shows the vowels with
the highest R? for height. The semivowel ER is not shown here but is also as
highly correlated to height as IY, which exhibits the greatest R2. The figure
shows decreasing R? values as red circles of decreasing color intensity.

only wish to highlight the case of age. We find that age is
highly correlated to only a few phonemes, all of which turn
out to be vowels.
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Fig. 6. The predictability of age, accent and gender from different phonemes
in the TIDigits database, computed using sub-phonetic formant features over
the entire database. Accent is not predictable from individual phonemes at
all. This makes sense since prior studies have shown that accent is encoded
Jjointly in phonemes, and entire formant charts are needed to identify them.

V. CONCLUSIONS

The results clearly demonstrate the validity of an
articulatory-phonetic-based approach to forensic analysis of
voice. The proposed methodology is of particular use in cases
where the available voice sample may be of short duration,
e.g. in the word Mayday from a hoax call, comprising just a
few phonemes. Estimating speaker parameters based on only
the most appropriate phonemes can provide useful results in
these scenarios.

The articulatory-phonetic approach presented in this paper
is exemplified in the context of deducing height and age, but
can be applied to any other anthropometric, psychometric,
sociometric and suchlike measurements from the voice. While
we have not addressed robustness issues and analysis of noise-
corrupted recordings in this paper, we have found in practice
that once we are able to generate accurate sub-phonetic seg-
mentations in these cases (using appropriate robustness tech-
niques and specially modified state-of-art automatic speech
recognition systems), our methodology applies well to the es-
timation of both anthropometric and psychometric parameters.
We are in the process of publishing these results.
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