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ABSTRACT

Traditionally, speech recognizers have used a strictly Bayesian
paradigm for finding the best hypothesis from amongst all possible
hypotheses for the data to be recognized. The Bayes classification
rule has been shown to be optimal when the class distributions rep-
resent the true distributions of the data to be classified. In reality,
however, this condition is often not satisfied — the classifier itself is
trained on some training data and may be deployed to classify data
whose statistical characteristics are different from the training data.
The Bayes classification rule may result in suboptimal performance
under these conditions of mismatch. Classification may benefit from
the use of modified classification rules in this case.

The use of entropy as an optimization criterion for various clas-
sification tasks has been well established in the literature. In this
paper we show that free energy, a thermodynamic concept directly
related to entropy, can also be used as an objective criterion in classi-
fication. Furthermore, we show how this novel classification scheme
can be used in the framework of existing Bayesian classification
schemes implemented in current speech recognizers by simply mod-
ifying the class distributions a priori. Pilot experiments show that
minimization of free energy results in more accurate recognition un-
der conditions of mismatch.

Index Terms— Bayesian classification, Speech recognition,
Free energy, Temperature

1. INTRODUCTION

Currently, the best performing state-of-art large vocabulary speech
recognition systems are statistical pattern classifiers which model
sound units using hidden Markov models (HMMs). Given a se-
quence of data X derived from the speech signal, the classification
problem that is solved is that of finding the class ¢(X) for which
the following expression, given by the Bayes classification rule, is
maximized:

(X)) = argmg,xP(C)P(X|C’) (1)
where C' represents any class and P(C) is the a priori probability of
C. For the speech recognition problem, C' represents word-sequence

hypotheses. P(X|C) is the probability of X given by the HMM for
C'. This can be equivalently expressed as

c(X) = arg max {log P(C)+ logZP(X7 s|C)} )

where s is any state sequence through the HMM for C, that might
have generated X. This is approximated by the Viterbi algorithm as

¢(X) = arg max {log P(C) 4+ max{log P(X, s|C)}} 3)

The Bayes classification rule has been shown to be optimal when
the class distributions represent the true distributions of the data to
be classified. In other words, the distribution of the test data must
match those employed by the classification rule.

In HMM-based speech recognition systems, class distributions
are represented by HMMs. The parameters of the HMMs are learned
from a corpus of training data. Once trained, the system is frequently
deployed in varied acoustic environments and used by diverse users,
as a result of which the test data are rarely identically distributed to
the training data. The requirement for optimal classification — that
the distribution of the test data must match the distributions used by
the classifier — is violated. Consequently, the classification perfor-
mance achieved with the Bayes classification rule is suboptimal.

The conventional solution to this problem is to modify the pa-
rameters of the HMMs in the classifier to better represent the test
data, using one of several methods that have been proposed for the
purpose (e.g. [MAP/MLLR]) [1, 2]. Bayesian classification is then
performed using the modified parameters. While these procedures
are highly effective, they require adaptation data that are similar to
the test data and significant offline computation to obtain the adapted
parameters.

An alternative strategy is proposed in [3] where improved recog-
nition of mismatched data is achieved by modifying the classification
rule itself. In the modified classification rule, a free energy term that
is governed by a temperature parameter 7', is defined for the vari-
ous classes. The classification rule selects the class with the lowest
free energy. The HMM parameters are not modified; further the rule
itself is computationally no more expensive than the conventional
Bayesian classification rule. The modified rule has no Bayesian in-
terpretation except in the specific instance when 7' = 1. In our
previous work [3] classification at elevated temperatures (1" > 1) is
observed to result in large improvements in recognition performance
on mismatched test data.

In this paper we explore a third option. It can be shown that
elevating the temperature of an HMM in the free energy expression
given in [3] is equivalent to reducing its free energy. We therefore
attempt to modify the parameters of the state output densities of the
HMMs in a manner that reduces their free energy, prior to classifi-
cation. We refer to this procedure as heating the HMMSs. As in the
case of free energy based classification, the procedure is based only
on the assumption of mismatched test data, without any reference
to the specific test data themselves. The resulting HMM remains a
probability density with a total probability mass of 1. Bayesian clas-
sification rules can now directly be applied to the modified HMM.
Experimental results show that this can indeed result in significant
improvements in recognition accuracy on mismatched data.

The rest of this paper is organized as follows. Free energy based
classification is briefly explained in Section 3. Section 4 outlines the
heating of HMM parameters. Experimental results are presented in
Section 5. Our conclusions are presented in Section 6.



2. RELATED WORK

The relationship between the thermodynamic principle of entropy
and the information theoretic concept of entropy has long been
known [4, 5, 6, 7]. In fact, frequently used terms in machine learning
and statistics, such as “Gibbs” sampling and “Boltzmann” machines
are drawn from Thermodynamics. Not surprisingly, the concept
of “free energy”, originally defined for thermodynamics, has also
found its analog in pattern classification and machine learning.

Invocations to the concept of entropy and the related notion of
cross-entropy, in particular, are ubiquitous in statistical pattern clas-
sification. Entropy can alternately be viewed as the expected log-
likelihood of a random variable. Maximum-likelihood estimation, a
popular tool for estimation of distributions and models, as well as
for classification, effectively minimizes empirical estimates of the
relative entropy between the true distribution of a random variable
and that specified by the model [8, 9]. Entropy and cross-entropy
can be used to characterize both the compactness of a data set and
the diversity of separate data sets. As a result, entropy has been used
as a criterion for classification and clustering of data since at least
the early eighties [10, 11]. Entropy has also been used as a mea-
sure of the structure in a data set or a model — low entropies imply-
ing high predictability and hence high structure [12]. On the other
hand, lack of information has been characterized as high entropy:
the celebrated maximum-entropy method employed to learn models
in a variety of fields such as text processing, information retrieval,
speech and audio processing [13, 14, 15] and even signal processing
[16] effectively attempt to capture known facts about the data, while
assuming maximum ignorance about other facets.

The concept of “free energy” too has found widespread use in
various fields of computer science such as statistics, optimization,
and machine learning. One of the earliest invocations to free energy
was in the now-famous Metropolis-Hastings algorithm [17]. In this
and subsequent algorithms of a similar nature [18, 19] free energy is
employed as a characterization of the randomness in the steps taken
by an algorithm in proceeding towards its objective. The “temper-
ature” of the system is used as a control parameter over this ran-
domness. From another perspective, increasing the temperature of
a system and thereby its free energy is equivalent to flattening the
landscape of an objective function that is being searched for an opti-
mum. This perspective has naturally led to the concept of annealing
[18], where the temperature of a system (or objective function) is
gradually lowered from a high value, to enable an optimization algo-
rithm to escape local optima and increase its likelihood to arrive at a
global optimum.

An alternative interpretation is also presented in pattern anal-
ysis mechanisms that are based on self organization, such as self-
organizing maps [20], Hopfield networks [21], Boltzman machines
[22] and the various neural network architectures that build on them
[23]. Here the analogy is closer to that in the well known spin-glass
effect [24] in which a large number of free-floating magnetic dipoles
attempt to align themselves to a local magnetic field, while also af-
fecting the field experienced by their cohorts through their own ori-
entation. The spin glass has a finite number of minimum-free energy
stable configurations into which it can arrive, and the “attraction”
of these configurations depends further on the temperature of the
system. Analogously, self-organizing network structures attempt to
arrive at stable configurations that locally minimize an equivalent of
free energy, and their ability to arrive at these configurations is in
turn governed by a temperature parameter.

In all cases, (the computational analog of) free energy has even-
tually been used as a handle to achieve improved optimization over

complex, possibly non-convex objective function landscapes.

In this paper we hypothesize that free energy provides a natural
objective function to be minimized for classification as well. Par-
ticularly, in scenarios such as speech recognition, where evidence is
obtained from multiple sources (acoustics and language), if one of
the sources is noisy, recasting classification as a free energy mini-
mization problem gives us a natural means of flattening the peaks
and valleys in the contribution of the noisy component to the over-
all classification objective. Moreover, expressing this in terms of a
“temperature” also provides an intuitive explanation — the noisy in-
formation source may be viewed as being at a “higher” temperature.

The literature on the direct use of free energy as an objective
function for classification is, however, sparse, except in situations
where it is used as a mechanism for annealing a solution towards the
true optimum [25]. Classification at raised temperatures is generally
not performed, and in the case of speech recognition, the only related
work we have found is our own prior work on the topic [3].

3. FREE ENERGY BASED CLASSIFICATION

Free energy is a characteristic of thermodynamic systems. It is the
amount of work required to restore the system to a state of equilib-
rium, implying by definition that when a system is in equilibrium,
its free energy is minimum. Consider a system at temperature 7" that
has an energy Hs when it is in some configuration s. Let P be the
probability that the system is in configuration s, and P be the set of
all Ps. The free energy of the system is defined as

F(P)=Y_"P.H.+ T P.log(P.) @

The first term represents the average energy in the system and the
second term represents the entropy of the system. The minimum
free energy is derived by minimizing Equation 4 with respect to P
and can be shown to be [3]:

Fz—TlogZexp(ifs> 5)

Drawing from this thermodynamic analogy, free energy has been
defined for other systems where the notion of a system configuration
exists. One such definition is that for parametric statistical models
with latent variables, mainly for the purpose of estimation of their
parameters [25].

The free energy of an HMM is defined as follows: let A¢c rep-
resent the parameters of the HMM for class C. Let the a priori
probability of C' be P(C). Let X be the data to be classified, and
s be any valid state sequence through the HMM, that can generate
X. We equate s with the configuration of the HMM and define the
energy of s, Hs, as

H, = —log P(C) —log P(X, s|A¢) (6)

This is the negative of the log of the joint probability of the class, the
state sequence, and the data. Using Equation 5, the free energy of
the system (i.e., the HMM) is now given by

Fe(X|Ac) = —log P(C) — Tlog (Z P(X,sAcﬁ) )

S

Classification with free energy associates data X with the class ¢(X)
according to the rule:

c¢(X) = arg mcinFc(X|Ac) (8)



The free energy for an HMM can be efficiently computed using the
following variant of the forward algorithm:

1

O[(S, t7 C) =-T lOg Z (efa(s/,t,c)a(8/7 5)P($t|8)) T (9)

a(s,1,C) = —log P(C) —log w(s) — log P(z1]s)  (10)

Fo(X|Ac) = —Tlog <Ze_a(w )) an

where a(s’, s) is the transition probability from state s’ to state s,
m(s) is the initial probability of s, and P(x¢|s) is the value of the
state output density of s at x;. The minimum free energy classi-
fication rule is identical to the Bayes classification rule at 7' = 1.
Classification performance has however been empirically observed
to be best at higher temperatures [3], particularly when there is a
mismatch between the HMM and the true distribution of the data to
be classified.

4. MODIFYING HMM PARAMETERS TO DECREASE
FREE ENERGY

The free energy of an HMM as computed using Equation 7 does
not represent a probability, and the classification rule in Equation
8 is not the Bayesian rule. Nevertheless it is theoretically possible
to redefine the parameters of statistical models in the classifier such
that the Bayesian classification rule based on the redefined models is
identical to the minimum free energy classification rule of Equation
8. It can be shown that such redefinition of the statistical parame-
ters requires modification of not only the parameters of the distribu-
tions of the classes, but also the a priori probabilities of the classes
themselves. The modified class parameters must be defined in terms
of a partition function that cannot be expressed in closed form for
HMMs. The modified a priori class probabilities are a function of
both the temperature and the parameters of the individual classes. It
is not clear that the resultant statistical model can still be expressed
as an HMM.

On the other hand, conversion of density parameters to simulate
minimum free energy classification using the Bayesian classification
rule is tractable when class distributions are mixture Gaussian den-
sities rather than HMMs. Mixture Gaussian class distributions have
the following form:

P(z|Ac) =Y worG(a|uok, oox) (12)
k

where we k., pio,k and oc i are the mixture weight, mean and vari-
ance of the k'™ Gaussian in the density of class C, and G(z|u, o)
represents the value of a Gaussian with mean p and variance o at a
vector z. It can be shown that minimum free energy classification at
temperature 7 is identical to Bayesian classification with modified
mixture Gaussian densities Pr(z|A¢) and a priori class probabili-
ties Pr(C) that have the following form:

Pr(z|Ac) =) worGle|pck, Toc,) (13)
k
where the new mixture weights are given by
_ 1 L T—1
wek = Ewc,k|00,k| 2T (14)

where Z¢ is a normalizing constant for the mixture weights of C,
and
Zc

“Cpe)t (15)

Pr(C) =

where Z is a normalizing constant.

We note that state output densities in HMMs are usually mod-
eled as mixture Gaussian densities. In Equation 7, which speci-
fies the free energy of an HMM at a temperature 7, the individual
P(X, s|Ac) components used within the second term on the right
hand side are true probabilities, computed as

P(z1]s1) | |a St—1, St)

t>1

P(X,s|A¢) = 7(s1) P(xz|se)  (16)

where s is the state at time ¢ in the state sequence s and x; is the ¢
observation vector in X. In this paper we propose a modified hybrid
definition of the underlying thermodynamic system, where only the
individual states of the HMM are subject to thermodynamic varia-
tions, but the rest of the system are governed strictly by Markovian
rules. This results in a modified definition of the free energy:
Fo(X|Ac) =

—log P(C) flogzp(X,SMc) Y

(z1]s1) ||a St—1, St)

t>1

P(X,s|Ac) = 7(s1)F F(z¢|se)  (18)

where F'(x|s¢) is the free energy of the state output density of s;.
The term P(X, s|Ac) does not represent a probability. Since we
wish to permit the use of the Bayesian classification rule, we do not
use Equation 18 directly. Instead we modify the parameters of the
state output densities by modifying their mixture weights according
to Equation 14. We refer to the modification of state density parame-
ters in this manner as heating the HMM. The modified densities now
result in likelihood values that are approximations to scaled versions
of the free energy. P(X, s|A¢) is now computed as

$1|51 Hll St—1,6t)

t>1

P(X,s|Ac) = m(s1)P P(xzis))  (19)

where ]5(36,5|st) is the state output density value of s; computed us-
ing the modified parameters. Fo (X |Ac) now still represents a prob-
ability and the conventional Bayesian classification rule can be ap-
plied. The conventional forward and Viterbi algorithms can be used
to compute class probabilities.

The equations above show how the forward and best-state scores
can be computed at elevated temperatures. For recognition, we em-
ploy the modified state output density values within a conventional
Viterbi search as given in Equation 19.

5. EXPERIMENTAL EVALUATION

Experiments were aimed at highlighting the effect of incorporating
the free energy term in the HMM state distributions on speech recog-
nition performance under conditions of mismatch. Since there are a
vast number of mismatched scenarios that can occur in real life, and
that can be simulated, we decided to focus on a simple proof-of-
concept mismatch scenario involving non-native speech. Note again
that the non-nativity is not the focus of this paper; rather it is the
mismatch between the acoustic models and the test data. Experi-
ments were performed with the NATO Non-Native (N4) Speech cor-
pus [26]. This is a database of non-native speech collected by the
NATO Research Study Group and made available to the community
from the Linguistic Data Consortium (LDC). The database consists
of accented speech from people of four different nationalities: Ger-
man (DE), Dutch (NL), Canadian (CA) and British (UK). Baseline
acoustic models were trained from the TDT2 [27] and TDT3 [28]



Temp | 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 23 24 2.5
NL 872 | 753 | 68.8 | 68.8 | 709 | 722 | 71.1 | 68.6 | 68.1 | 65.8 | 62.8 | 61.3 | 61.2 | 62.1 | 63.8 | 65.5 | 67.2
DE 904 | 79.0 | 740 | 732 | 78.1 | 78.0 | 75.4 | 739 | 724 | 69.6 | 67.3 | 64.7 | 62.5 | 619 | 61.3 | 61.5 | 62.5
CA 67.0 | 56.6 | 48.8 | 46.2 | 459 | 46.1 | 454 | 437 | 415 | 404 | 39.2 | 38.7 | 38.8 | 403 | 419 | 44.1 | 463
UK 96.1 | 82.6 | 744 | 71.6 | 71.0 | 69.5 | 68.1 | 66.7 | 66.4 | 652 | 642 | 64.0 | 64.1 | 649 | 659 | 67.5 | 69.6

Table 1. Performance of maximum-likelihood and free-energy based speech recognition. The 7' = 1 column highlighted in yellow corre-
sponds to conventional decoding. The bold numbers are the best results obtained in each row.

speech corpora, also available from the LDC. We used the CMU
Sphinx speech recognition system for our experiments. The sys-
tem uses several different search strategies for decoding. We used
the full flat decoding strategy for continuous speech. The acoustic
models used were continuous density 3-state Bakis topology HMMs
with no skips permitted between states. The models comprised 6000
tied states, with 8-component Gaussian mixture state output distri-
butions. An ARPA format trigram language model was built using
military protocol text collected from the internet. There were no
out-of-vocabulary words, but the NATO database did not contribute
otherwise to the language model.

The test data were recognized at several temperatures. Table
1 shows the word error rates obtained for each accent, against the
temperature at which the data were decoded. The highlighted (yel-
low) column in the table corresponding to 7" = 1 is exactly identical
to the standard Bayesian decoding, as explained earlier. Columns
for T' < 1 show recognition performance at lowered temperatures,
whereas those at 7' > 1 show the same at elevated temperatures.
Figure 1 shows the performance in graphical format to present the
trends visually. Each subplot shows the performance for a single
accent.
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Fig. 1. WERs as a function of temperature for different accents.
T = 1 represents the conventional MAP decoding strategy.

We note from the results that the optimal recognition perfor-
mance is not obtained at 7' = 1. The best result in all four cases
occurs at an elevated temperature in the vicinity of T' = 2; specif-
ically, if a single elevated temperature were to be chosen as the op-
erating point, it would be 7' = 2.1. The difference between the
baseline WER at 7" = 1 and the best result at elevated temperatures
is quite large, at nearly 18% absolute in three of four cases.

Figure 2 shows the performance obtained after one round of un-
supervised MLLR adaptation. The left panel shows the gains from
adaptation, when conventional Bayesian (Viterbi) decoding is per-
formed in the first pass. The right panel shows results obtained when

N Bayes . FE
80 | W MLLR-Bayes 1 80 . MLLR-FE

WER (%)

NL DE CA UK NL DE CA UK

Fig. 2. Effect of unsupervised MLLR adaptation. Left: Original and
adapted WERs for conventional decoding. Right: The same for free
energy (FE) decoding at elevated temperature.

the first pass of decoding is at an elevated temperature (free-energy
based recognition). Note that improvements obtained from elevat-
ing the temperature in the first pass of decoding are sustained after
MLLR adaptation, showing that the benefits obtained are comple-
mentary.

6. CONCLUSIONS

Elevation of temperature is observed to result in significantly im-
proved recognition under conditions of mismatch. Considering that
just a simple adjustment has been made to the HMM parameters
in the acoustic models to achieve this, the improved classification
scheme is promising for use in speech recognizers.

Figure 1 summarizes the effect of raising temperature. We ob-
serve that there is a general trend of improved recognition as tem-
perature increases to 2.1; however a “bump” is observed at a tem-
perature of 1.4 or so, and the performance at 1.2 appears to be some
form of local optimum.

More generally, the notions of “temperature” and “free energy”
have often been invoked in the context of annealing for optimization
of objective functions defined over a continuous support. Classifica-
tion, on the other hand, is typically a search over a discrete support,
and not usually viewed as an optimization problem. This is gener-
ally considered to be distinct from the situations where notions of
free energy and temperature may be invoked.

Automatic speech recognition systems, however, present an in-
teresting case. Although they do indeed represent a search over a
discrete set, the set itself — representing all possible sentences that
may be spoken — can be infinitely large, suggesting that the concept
of annealing may be drawn upon if the search space could somehow
be ordered and represented over a continuum. However, how this
may be done is unclear.

Although we have not actually cast the problem of recognition
in this light in this paper, we have definitely demonstrated that the
concept of recognition at elevated temperatures can indeed be cast
in formal terms, and furthermore, that even in a single pass of recog-
nition, elevation of temperature can result in significantly improved
recognition. In future work, we aim to expand this to a fuller formu-
lation of annealed search for optimal recognition.
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