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Abstract—This paper presents a new beamforming method for
distant speech recognition (DSR). Thelominant mode subspace is
considered in order to efficiently estimate theactive weight vectors
for maximum kurtosis (MK) beamforming with the generalized
sidelobe canceler (GSC). We demonstrated in [1], [2], [3] that the
beamforming method based on the maximum kurtosis criterion
can remove reverberant and noise effects without signal cawl-
lation encountered in the conventional beamforming algotihms.
The MK beamforming algorithm, however, required a relatively
large amount of data for reliably estimating the active weidnt
vector because it relies on a numerical optimization algothm.
In order to achieve efficient estimation, we propose to casda the
subspace (eigenspace) filter [46.8] with the active weight vector.
The subspace filter can decompose the output of thblocking
matrix into directional signals and ambient noise components.
Then, the ambient noise components are averaged and would
be subtracted from the beamformer’s output, which leads to
reliable estimation as well as significant computational rduction.
We show the effectiveness of our method through a set of
distant speech recognition experiments on real microphonarray
data captured in the real environment. Our new beamforming
algorithm provided the best recognition performance among
conventional beamforming techniques, a word error rate (WER)
of 5.3 %, which is comparable to the WER of 4.2 % obtained
with a close-talking microphone. Moreover, it achieved baer
recognition performance with a fewer amounts of adaptation
data than the conventional MK beamformer.

l.

There has been great interest in distant speech recogni
(DSR) [5], [6], [7], [8]. In many applications, it is not apguri-

ate to force participants to wear intrusive devices sucHasec

INTRODUCTION

talking microphones. Especially in theme parks, it is ppeha

necessary for children to feel free to join attractions with
unnatural interface equipment. Accordingly, we address
recognition task of childeren’s speech.

ant and noise effects. Adaptive beamforming is a promisi
approach to speech enhancement because the distortioa o
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target signal caused by noise suppression is less than fthat o
single channel processing.

Such adaptive beamformers can be implemented in gener-
alized sidelobe canceler (GSC) configuration{63.37]. The
GSC beamformers typically consist of tlyeiiescent vector,
blocking matrix and active weight vector. In prior work, we
developed GSC beamforming methods which adjust the active
weight vector so as to make the beamformer’s outputs as-super
Gaussian as possible [1], [2], [3], [9]. We demonstratedLin [

[2], [9] that beamforming algorithms based on such criteria
can enhance the target speech by using the reflections withou
signal cancellation encountered in the MVDR beamformers. It
was also shown that our beamforming methods achieve better
recognition performance than a variant of MVDR beamform-
ers. Here, we consider the maximum kurtosis criterion which
can be computed in the much simpler way than negentropy. In
contrast to BSS techniques, beamforming based on the maxi-
mum kurtosis criterion [2], [6] can avoid undesired distmmt

of the target signal by imposing a distortionless constriain

the look direction. However, in the same as BSS methods,
maximum kurtosis beamforming has to resort to a gradient-
based numerical optimization algorithm for estimating the
active weight vector. Accordingly, it requires a relativédrge
amount of adaptation data for reliable estimation. Furttoze,

the free parameters to be estimated by the gradient metleod ar
tﬂ)‘?gferably reduced.

In this work, we take into account the subspace (eigenspace)
method [4, §6.8] [10], [11] as a pre-processing step for
estimation of the active weight vector. Our motivationsibedh
this idea are to 1) reduce the dimension of the active weight
vBctor and 2) improve speech enhancement performance based
on decomposition of the outputs of the blocking matrix
§ito directional and ambient signal components. In order to

hieve such decomposition, we perform the eigendecompo-
sition and select theD eigenvectors corresponding to the
largest eigenvalues. Such eigenvectors are termed thendatni
modes [4§6.8.3]. The dominant modes are associated with the
directional sound sources and the other modes are averaged
as a signal model of ambient noise. By doing so, we can
readily subtract the averaged ambient noise component from



X(k,m) wg(k,m) = —Y(k,m) whereE[] indicates the_ gxpectatioq operator ghis typically
set to3 = 3. The empirical kurtosis (2) measures howan-
- Gaussian Y is [12]. The Gaussian pdf has zero kurtosis;
> wa(k,m) pdfs with positive kurtosis areuper-Gaussian; those with
Xb(k,m) negative kurtosis arsub-Gaussian. Note that the empirical
kurtosis measure requires no knowledge of the actual pdf of
Fig. 1. Schematic of a generalized sidelobe canceling (G&@nformer gyphand samples of speech, which is its primary advantage
for an active source. L .
over negentropy as a measure of non-Gaussianity. Maximizin
the degree of super-Gaussianity yields a weight veetgr

the beamformer's output. Moreover, the reduction of the dfaPable of canceling interference—including incoherense
mension of the active weight leads to computationally effiti t_hat leaks through the 3|del(_)bes—W|th_out the signal c_almcel
and reliable estimation. Notice that we adjust the activigiate tion problems encountered in conventional beamforming.
vector based on the maximum kurtosis criterion in contrast t [1l. SUBSPACE METHOD

the norma! dominant-modg rejection (DMR), beamformers [4, This section describes the subspace method for the output of
§6.8.3] which can be considered as the variant of the MVDRe blocking matrix in the subband domain. From this section

beamformers. Therefore, our technique described here dges it the frequency index for the sake of convenience.
not suffer from signal cancellation. It is also worth noting | e case that there are neither steering errors nor mis-
that subspace filtering here is analogous to whitening usgfli-hes between microphones, the blocking matrix's out-
as a measure of pre-processing in the field of independ?)m, X,(k) = BY(k)X(k), only contains the directional

component analysis (ICA) [12]. interference and ambient noise signals. However, in the rea

The balance of this paper is organized as follows. Sectiond}ironments, it also includes the target signal companent
describes the conventional MK beamforming algorithm. Sege to those errors as well as the reverberant effects.

tion 11l discusses the subspace method. In the section IV, MK | ot us first denote theD directional signal components

beamforming with the subspace filter is described. SectionMntained in the output of thf, x (M, — 1) blocking matrix
shows the speech recognition experiments. We finally descri,g

B (k,m)

conclusions and future work in the section VI. V(k) = [Va(k), -, Va(k),--, Vb (k)] . 3
Then, the output of the blocking matrix can be expressed as
Il. CONVENTIONAL MAXIMUM KURTOSIS BEAMFORMING Xy (k) = AV (k) + N(k) (4)

Consider a subband beamformer in GSC configuration [@here A and N(k) represent the transfer functions and the
§6.7.3], as shown in Figure 1. The output of a beamformambient noise signals, respectively. Notice that the tipath
for a given subband at framie and frequency binn can be from the target source signal to each microphone is assumed
expressed as to be excluded fromA because of the distortionless constraint

" imposed with the blocking matrix.
Y (k,m) = [wq(k,m) — B(k,m)wa(k,m)]" X(k,m), (1) Assuming thatV (k) and N(k) are uncorrelated, we can
wherewq(k, m) is the quiescent weight vector for a source, Write the covariance matrix oX,;, as
B(k,m) is theblocking matrix, wa(k, m) is theactive weight 3 = B [Xp(k)XH (k)] = AZ, AT + %, (5)
vector, and X(k,m) is the input subbandnapshot vector.
In keeping with the GSC formalismwq(k,m) is chosen
to give unity gain in the look direction [6§13.6]; ie., v =E [V(k)VH(k)] andZ, = E [N(k)N" (k)] .
to satisfy a distortionless constraint. The blocking matri Tpe subspace method seeks a sebdinearly independent
B}(f,m) is chosen to be orthogonal teq(k,m), such that yectors contained in the subspade{A}, spanned by the
BY (k,m) wq(k, m) = 0. This orthogonality implies that the colymn vectors ofA. The first step for obtaining such set
distortionless constraint will be satisfied for any choide qy the vectors is to solve the generalized eigenvalue (GE)

wa(k,m). decomposition problem as in [46.8] [10], [11],
In our study, subband analysis and synthesis are performed S E—3 EA

with a uniform DFT filter bank based on the modulation of
a single prototype impulse response [13]fd,1], which is whereA is a diagonal matrix of the eigenvalues sorted in the
designed to minimize an indivisual aliasing term. descending order,

While the active weight vector is typically chosen to mini- A =diag[\, -, Ap, - A1) (6)
mize the variance of the beamformer’s outputs, we developed . . , i ,
an optimization procedure to find thats(k, ) which maxi- andE is a matrix of the corresponding eigenvectors,
mizes kurtosis [2]. The empirical kurtosis of the beamforme E=e, - ,ep, e, 1] 7)
outputs can be expressed as

where

) Here, we assume thdt, is an identity matrix. Then, we
In(Y) = E[[Y(m)|*] - BE [[Y (m)[*], (2) select the eigenvectors with thie largest eigenvalue®, =
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Fig. 3. The average of the numbers of the contribution ragiaeeding the

Fig. 2. Three-dimensional representation of the eigeevaistribution as a thresholds as a function of frequencies.

function of the order and frequencies.

on frequencies. In particular, more eigenvectors tendseto b

[e1, - ,ep]. In the similar manner, we define the subspadghosen in high frequencies due to absence of directional
for the ambient noise a&,, = [ep11, - ,€n,_1)- signals with high frequency components. In the case that

The ideal properties of the eigenvectors and eigenvalues ¢&e strong coherent signals do not exist, the distributibn o
be summarized as follows. the eigenvalues become homogeneous, which results in the

« The subspace spanned by the eigenvectors is equal to m{orm FOU”'F’U“O” ratios. ) ) ,
of A, i.e, R{E,} = R{A}. In optimization of the active weight vector, we estimate

. The power of theD directional signals is associated with€Ch component corresponding to the ambient noise signal
separately. Accordingly, we use the sum of the eigenvetmors

the D largest eigenvalues. h bi X - My—1 b
« The power ofN(k) is equally spread over all the eigen{l'® @mbient noise space as = 2_d=p1€d- Our subspace
filter can be now written as

values and\f, — D — 1 smallest eigenvalues are all equa
to 0%, i.e., the noise floor. U=ley, ,ep,&n,]. (8)

» R{E,} is the orthogonal complement Gt{E., }, i.e., Note that we assume the covariance matrix in (5) can be
R{E,} = R{E,} L. .
) ) _approximated as

In order to cluster the eigenvectors for the ambient noise,
we have to determine the number of the dominant eigenvalues
D. Figure 2 illustrates an eigenvalue distribution as a fiamct
of the order of the eigenvalues and frequencies. In order to
generate the plots of the figures in this section, we computébere
the eigenvalues from the outputs of the blocking matrix on L 1
the real data which will be described in Section V. As shown ON = M,—D—1 Z Ad
in Figure 2, it is relatively easy to determine the number d=D+1
of the dominant modesD), especially in the case that the With the outputs of the subspace filter, we estimate the
number of the microphones is much larger than the numbmstive weight vector providing the maximum kurtosis value.
of the directional signals. In this work, we determibebased If the output of the subspace filter is a noise signal, the
on the threshold of the contribution ratio,;/ Z;\ﬁ’fl Aj.  corresponding component of the active weight vector should
Figure 3 shows averages of numbers of the contributiongatige adjusted so as to subtract the noise component from the
exceeding threshold$)~2, 10~3 and10~*, at each frequency. output of the quiescent vector. If it is an echo of the target
Figure 3 indicates how many dominant modes are used in #ignal, the active weight vector should shift the phase altd a
lower branch when we ignore the eigenvectors associatéd wite component to the target signal in order to strengthen it.
the lower contribution ratio than the threshold. It is clé@m These operations would be easier by separating the echo from
Figure 3 that the lower threshold for the contribution rao the ambient noise component with the subspace filter.
set, the more eigenvectors are used.

Ideally, the number of the dominant modes should be equif- MAXIMUM KURTOSIS BEAMFORMING WITH SUBSPACE
to the number of the directional sound sources over all the FILTERING
frequencies. However, by closely looking at Figure 3, we Figure 4 shows configuration of our new MK beamformer.
can observe that the number of the dominant modes depefids beamformer’s output can be expressed as

D
~ H_ -2+ <H
DI Z Ad€deq + onene,, 9)
d=1

My—1



solution, we resorted to thgradient descent algorithm [15,
§1.6]. Upon substituting (11) into (13) and taking the partia
derivative with respect to the active weight vector, we obta

X(k,m) ~|j>w:(k,m) »(-—Y(k,m) norm constraint at each block . In the absence of a closed-for
B

(km) —U{k,m)— W.(km)

X, (k,m)
0Ty (Y;ax 9 [Petlet i
Fig. 4. Maximum kurtosis beamformer with the subspace filter ﬁ = "Ly ( k; Y (k)| U™ (0)BH (k)X (k)Y (k)
25 botLy—1 , bs+Lp—1
— Y(k UH(5)BH (k)X (k)Y™(k
Y(k) = [wo(k) — BR)U(kpwa(b)]” X().  (10) " 12 ( 2w ) ( 2, B mxE ))

The active weight vector is adjusted so as to achieve the max= awa(b).
imum kurtosis of beamformer’s output. Zelinski post-filtey
can then be performed on the output of the beamformer [14].1pe gradient (14) is iteratively calculated with a block
The difference between (1) and (10) is the subspace filigf sypband samples until the kurtosis value of the beam-
between the blocking matrix and active weight vector. O4prmer's outputs converges. For the gradient algorithre, th
subspace filter can decompose the output vector into th@ive weight vectors are initialized with the estimateshat
directional signal and ambient noise components. ThegefOpreyious block. The active weight vector of the first block is
we only need to estimate the phase shifts of the active weighjalized with w, = [0, - - - , 1]7 because the last component
vector on the constrained subspace fundamentally {12l]. ~ corresponds to the ambient noise which should be subtracted
Moreover, the solution of the general eigenvector decomp@om the output of the quiescent vector.

sition is less dependent of the initial values than that ef th Tpe beamforming algorithm can be summarized as follows:
gradient algorithm for multi-dimensional maximization. 1) Initialize the active weight withws(0) = [0 1T
a - y T .

A. Block-Wise Adaptation of the Active Weight Vector 2) Given estimates of time delays, calculate the quiescent
vector and blocking matrix.

For each block of input subband samples, recursively
update the covariance matrix 3% (b) = pXp(b—1) +

(1 — )X (b) whereyp is the forgetting factor, calculate
the dominant modedJ”(b) and estimate the active
weight vectorw,(b) based on the gradient information
computed with (14) subject to the norm constraint

(14

Based on equation (10), the kurtosis of the outputs is
computed from a block of input subband samples at each blockg)
instead of using the entire utterance data. We incremgntall
update the dominant modes and active weight vector at each
block b consisting of L, samples here. Accordingly, the
beamformer’s output of (10) should be precisely re-reemitt

as . until the kurtosis value of the beamformer's outputs
Y (k) = [wq(k) — B(k)U(|k/Lp])wa(lk/Ls )] X(k). 11) converges.
4) Initialize the active weight vector obtained in step 3 for
where |.] is the floor function and k/L;| indicates the the next block and go to the step 2.
block indexb. The kurtosis for a block of., samples starting  our preliminary experiments revealed that this block-wise
from frameb, can be expressed as method is able to track a non-stationary sound source, and

oL 1 bl 1 2 provides a more accurate gradient estimate tsample-by-
1 s b— 1 s b— . . . .
Ty(Y) = (Lz, S |Y(k)|4> _3 ( S Y(k”z) a2 sample gradient estimation algorithms.

Ly
k=bs k=bs

whereb; is zero at the first input sample and shifted with \ye ran speech recognition experiments on children's speech

Ly after one block is processed. _ data captured with a microphone array. This section dessrib
In order to improve robustness by inhibiting the formatién q, experimental conditions and the results.

excessively large sidelobes, we apply a regularization {61 kjgyre 5 shows a flow chart of the distant speech recognition
to.th(.a cost function (12) and have the modified optlmlzatm(rDSR) system used in our experiments. Our DSR system
criterion first estimates the time delays based on the phase trans-
Tp(Yia) = Jp(Y) — o|wa(d)|? (13) form (PHAT) [6, §10.1]. Then, reliable channels are selected
based on the maximum multi-channel cross coefficient crite-
where we setv = 0.01 based on the results of the speediPN(MCCC) [16]. Following channel selection, beamforgin
recognition experiments in prior work [1], [2]. In additian and post-filtering are performed. The enhanced speech are
the regularization term, we also impose a unity constraint ¢"Put to our automatic speech recognition (ASR) system.
a norm of the active weight vector so as to prevent it from Our basic automatic speech recognition (ASR) system was
exceeding that of the quiescent vector. trained on two publicly available corpora of children’s epk:
We estimate the active weight vector which maximizes the 1) the Carnegie Mellon University (CMU) Kids' Corpus,
sum of the kurtosis and regularization term (13) under the  which contains 9.1 hours of speech from 76 speakers;



Microphone Array §9.1], maximum likelihood linear regression (MLLR) [6,

M-channel signal §9] and constrained maximum likelihood linear regres-
—/ sion (CMLLR) [6, §9] parameters, then recognize once
| TDOA Estimation | more with the adapted conventially trained model;

3) Estimate VTLN, MLLR and CMLLR parameters for the

1 J M time delays

SAT model, then recognize with same.

Channel Selection . .
‘ ‘ For all but the first unadapted pass, unsupervised speaker

M;-channel Sig”a'l J M, time delays adaptation was performed based on word lattices from the
‘ Beamforming ‘ previous pass.
Test data for our experiments were collected at the Carnegie
| Postitering | Mellon University Children’s School. The speech material
JEnhanced signal in this corpus was captured with a 64-channel Mark IV
| Speech Recognizer | microphone array; the elements of the Mark IV were arranged
| linearly with a 2 cm intersensor spacing. In order to proade

reference for the DSR experiments, the subjects of the study
Fig. 5. A flow chart of our distant speech recognition system. ~ Were also equipped with Shure lavelier microphones with a

wireless connection to a preamp input. All the audio dateewer

captured at 44.1 kHz. The test set consists of 356 (1305 Wwords

2) the Center for Speech and Language Understandiigerances spoken by an adult and 354 phrases (1,297 words)
(CSLU) Kids' Corpus, which contains 4.9 hours otttered by nine children. The children were native-English

speech from 174 speakers. speakers (aged four to six). They were asked to glagycat,
SaeHsten-and-repeat paradigm in which the adult experierent

speaks a phrase and the child tries to copy both pronuneiatio

ance distortionless response (MVDR) spectral envelope of and mto_na_tlon. As s .typ|callfor children in this age group,
pronunciation was quite variable and the words themselves

model order 30 [6,55.3]. Front-end analysis involved ex- . L
tracting 20 cepstral coefficients per frame of speech an metimes indistinct. .
' he search graph for ASR was created by constructing

then performingcepstral mean normalization (CMN). The . . !
final features were obtained by concatenating 15 consecutly finite-state automaton by stringingopycat utterances in

- N parallel between a start and end state. This acceptor was
frames of cepstral coefficients together, then perforriing convolved together with a finite-state transducer reptasgn
discriminant analysis (LDA), to obtain a feature of length 42. g P

The LDA transformation was followed by a second CMN stepghe phonetic transcr|pt|0r_ls of the 147 words in (Elepyca_lt
S . . .Vocabulary. Thereafter this transducer was convolved thigh

then a global semi-tied covariance transform estimatel ait . .

: - L HC transducer representing the context-dependency decision
maximum likelihood criterion [17]. . : .

i o . tree estimated during state-clustering §8,3.4].

The acoustic HMM was initialized from a context indepen- Table | shows word error rates (WERS) of every decoding
; . T ) Sgss obtained with the single distant microphone (SDM),
and variance of the training data. Thereafter, five iteratiof uper-directive beamforming (SD BF), conventional maximu
Viterbi training [6, §8.1.5] were conducted. This was foIIoweqiurtosis beamforming (MK BF) and rr;aximum kurtosis beam-

by an additional five iterations whereby optional silenced aforming with the subspace filter (MK BF w SF). The WERs
optional breath phones were allowed between words. The n fﬁained with the lapel microphone are also described as

step was to treat all triphones as distinct and train thre “reference . It is clear from the table | that the speaker

state 5|ngle-Gau35|a_n models for each in prder to _cl_uster aptation techniques can significantly reduce the WERs. It
states [18]. In the final stage of conventional training, ti‘\g also clear from table | that the new maximum kurtosis

context-dependent state-clustered model was mmalw&tj beamformer achieved the best recognition performance afte
a single Gaussian per codebook from the context—lndependﬂ% third pass

model; th“?e iter_ations of Viterbi t_ra_lining followed by &phg Table 1l shows the WERs for the threshold of the contri-
the Gau35|ar_1 with the model_tralnlng step_s._ These_ s_teps Wblfion ratio. The difference of the threshold does not give a
repeated until no more Gau35|an§ had sufficient trammgteoubig impact on recognition performance. However, the compu-
to 3”OW for fpl;tt;\sg.?'ggeéonventlonal model had %:'200‘“"?‘ %‘a?ional reduction can be significant especially in the ¢hae
and a tota ? I ' db ae:ismnd co(randpon.erllts. Sz$ventlo number of the channels are large because we can reduce
ga'”'r.‘g \:jva_ls g gmie:g yspeaker-adapted training (SAT) as the dimension of the active weight vector without sacrificin
escribed in | ‘§ 1.3]. , recognition performance by setting a low threshold value.
In our experiments, the ASR system consisted of threerapie ||| shows the WERs of the conventional and new
passes: MK beamforming algorithms as a function of amounts of
1) Recognize with the unadapted acoustic model; adaptation data at each block. We can see from table Il
2) Estimatevocal tract length normalization (VTLN) [6, that MK beamforming with subspace filtering (MK BF w SF)

The feature extraction used for the experiments was ba
on cepstral features estimated with a warpadimum vari-



Pass Pass
1 2 3 Algorithm Block size 2 3
Algorithm EXp. Child | Exp. Child | Exp. Child (second) EXp. Child | Exp. Child
SDM 9.2% 31.0%| 3.8% 17.8%]| 3.4% 14.2% Conventional 0.25 44% 15.8%]| 3.5% 12.0%
SD BF 54% 24.4%| 2.5% 9.6% | 2.2% 7.6% MK BF 0.5 3.4% 9.2% | 3.1% 7.3%
MK BF 54% 25.1%| 25% 9.0% | 2.1% 6.5% 1.0 24% 10.3%| 2.2% 6.9%
MK BF w SF || 6.3% 25.4%| 1.2% 7.4% | 0.6% 5.3% 25 25% 9.0% | 2.1% 6.5%
CTM 3.0% 12.5%| 2.0% 5.7% | 1.9% 4.2% MK BF w SF 0.25 25% 14.1%| 1.5% 9.7%
0.5 1.3% 8.7% | 1.0% 7.0%
TABLE | 1.0 12% 7.4% | 0.6% 5.3%
WORD ERROR RATEWERS) FOR EACH DECODING PASS
TABLE Il
WERS AS A FUNCTION OF AMOUNTS OF ADAPTATION DATA
Pass
Threshold for the 2 3
contribution ratio || Exp.  Child | Exp. Child
10 ; 0.8% 8.3% | 0.5% 6.3% [5] H.K.Maganti, D. Gatica-Perez, and |. McCowan, “Speenhancement
10~ 12% 7.4% | 0.6% 5.3% and recognition in meetings with an audio-visual sensoaydri EEE
103 13% 87%| 12% 59% Transactions on Audio, Speech and Language Processing, vol. 15, pp.
2257-2269, 2007.
TABLE Il [6] M. Wolfel and J. McDonoughDistant Speech Recognition. New York:
WERS FOR THE THRESHOLDS OF THE CONTRIBUTION RATIO Wiley, 2009.

[7] E. Zwyssig, M. Lincoln, and S. Renals, “A digital microphe array for
distant speech recognition,” iRroc. of ICASSP, Dallas, Texas, USA,
2010.
. . ) [8] S. Araki, T. Hori, T. Yoshioka, M. Fujimoto, S. Watanab&, Oba,
provides better recognition performance with the same amnou  A. Ogawa, K. Otsuka, D. Mikami, M. Delcroix, and K. Kinoshita
of the data than conventional MK beamforming. In the case “Low-latency meeing recognition and understanding usirgjadt mi-

. . crophones,” inJoint Workshop on Hands-free Soeech Communication
that a few amount of data are available, the solution of the ;4 wicrophone Arrays (HSCMA), Edinburgh, UK, 2011.

active weight vector obtained by normal MK beamforming[9] K. Kumatani, T. Gehrig, U. Mayer, E. Stoimenov, J. McDogh, and

does not a|WayS improve recognition performance due to the M. Wolfel, "Adaptive beamforming with a minimum mutual mrfination
d d f the initial val d h di infoi criterion,” IEEE Trans. Audio, Speech and Language Processing, vol. 15,
ependency of the Initial value and noisy gradient infororat pp. 2527-2541, 2007.

which can significantly change over the blocks. The resul®] R. Roy and T. Kailath, “Esprit-estimation of signal pareters via rota-

in Table 11l suggest that unreliable estimation of the ativ  tional invariance techniques/EEE Transactions on Acoustics, Speech
. . . and Sgnal Processing, vol. 37, pp. 984—995, 1989.

weight vector can be avoided by constraining the searchespaG; . asano, s. Ikeda, M. Ogawa, H. Aso, and N. Kitawaki, Ktzined

on the subspace spanned by the dominant modes and basisapproach of array processing and independent componelysintor

vector representing the ambient noise component. Note that blind separation of acoustic signaldEEE Trans. Speech and Audio

h . - Processing, vol. 11, no. 3, pp. 204-215, May 2003.
the solution of the elgendecomposmon does not depend A. Hyvarinen and E. Oja, “Independent component asiatyAlgorithms
the initial value in contrast to the gradient-based nunaéric ~ and applications,Neural Networks, 2000.

optimization algorithm. [13] K. Kumatani, J. McDonough, S. Schacht, D. Klakow, P. Nir@er, and
W. Li, “Filter bank design based on minimization of indivalualiasing
VI. CONCLUSIONS AND FUTURE WORK terms for minimum mutual information subband adaptive tfeaming,”

in Proc. |IEEE International Conference on Acoustics, Speech, and
In this paper, we proposed the cascade of the subspace filter Sgnal Processing (ICASSP), Las Vegas, Nevada, U.S.A, 2008.

and blocking matrix for the maximum kurtosis beamformeft4 C: Marro, ¥. Mahieux, and K. U. Simmer, "Analysis of neiseduction
" and dereverberation techniques based on microphone asiittypost-

We also demonstrated through a set of the DSR recognition fitering,” IEEE Transactions on Speech and Audio Processing, vol. 6,
results that the beamforming algorithm proposed here effec  pp. 240-259, 1998.

tively suppresses interference and ambient noise signals. 19 o Eﬁcrtsfggg'\k’”"”ear Programming. Belmont, MA, USA: Athena
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