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ABSTRACT

In prior work, the current authors investigated beamforming al-
gorithms that exploit the non-Gaussianity of human speech. The
beamformers proposed in [1, 2, 3] are designed to maximize the
kurtosis or negentropy of the subband output subject to the dis-
tortionless constraint for the direction of interest. Such techniques
are able to suppress interference signals as well as reverberation ef-
fects without signal cancellation. They require, however, multiple
passes of processing for each utterance in order to estimate the ac-
tive weight vector. Hence, they are unsuitable for online implemen-
tation. In this work, we propose an online implementation of the
maximum kurtosis beamformer. In a set of distant speech recogni-
tion experiments on far-field data, we demonstrate the effectiveness
of the proposed technique. Compared to a single channel of the ar-
ray, the proposed algorithm reduced word error rate from 15.4% to
6.5%.

Index Terms— Kurtosis, Beamforming, Microphone array,
Distant speech recognition

1. INTRODUCTION

In prior work, the current authors investigated the use of optimiza-
tion criteria for beamforming that exploit the non-Gaussianity of
human speech. This non-Gaussianity is a characteristic that can be
easily exploited in beamformer design, in that clean speech is highly
super-Gaussian, but becomes more nearly Gaussian when corrupted
by noise or reverberation [4, §13.5.2]. The algorithms examined in
our prior work were designed to either maximize kurtosis [1] or
negentropy [2, 3] of the subband output of a generalized sidelobe
canceller (GSC) [4, §13]. It was also shown in [1, 2] that those
beamforming techniques can effectively remove noise and reverber-
ation effects without the signal cancellation problems encountered
in the conventional algorithms based on second-order statistics such
as minimum variance distortionless response (MVDR) beamform-
ers [4, §13.3]. However, those methods required making multiple
passes through the data and hence are unsuitable for online imple-
mentation. Thus, in this work, we propose an online implemen-
tation of the maximum kurtosis beamformer, wherein the active
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weights of the GSC are updated for each block of samples after
a single pass through each utterance.

Distant speech recognition (DSR) has been of interest for inter-
active speech applications. DSR can be especially useful for young
children who may find CTMs too cumbersome and intrusive to use
in interactive attractions. Moreover, the accuracy of the state of
the art automatic speech recognition (ASR) systems is perhaps a
good objective measure for the speech intelligibility because it takes
into account the stochastic distance between correct and incorrect
phoneme sequences with acoustic models trained with many hours
of clean speech data and information for discriminating phonemes
is only used in ASR. In this work, we combine these heretofore sep-
arate research tracks, by testing the algorithms mentioned above on
speech data collected with lapel microphones and a linear micro-
phone array with 64 sensors. The subjects of the data collection
were children aged 4 to 6. In a set of DSR experiments on the
speech material, we show the effectiveness of the proposed tech-
nique.

The balance of this work is organized as follows. In Section 2,
we briefly review the non-Gaussian characteristics of speech, along
with how these basic characteristics can be successfully exploited
in developing effective beamforming algorithms. Our experimental
results are presented in Section 3, as well as a discussion thereof.
Finally, in Section 4 we draw our conclusions about this work and
outline our plans for the future.

2. MAXIMUM KURTOSIS BEAMFORMING

2.1. Super-Gaussianity and Kurtosis

The central limit theorem states that the sum of independent ran-
dom variables (r.v.s) is approximately Gaussian-distributed in the
limit as more components are added regardless of the probability
density functions (pdfs) of the individual components. It is also
known that the distribution of information-bearing signals such as
clean speech is not Gaussian. In fact, the actual distribution of the
clean speech signals fits in a super-Gaussian pdf which is charac-
terized by peaky and heavy-tailed probability mass distribution [4,
§13.5.2]. Therefore, speech can be enhanced by adjusting a beam-
former’s weights so as to make the outputs as super-Gaussian as
possible. The kurtosis is one of the popular criteria to measure the
degree of non-Gaussianty, that is, how far the distribution of r.v.s is
from Gaussian. The excess kurtosis or simply kurtosis of a r.v. Y
with zero mean, can be expressed as

kurt(Y ) , E{Y 4} − β(E{Y 2})2, (1)
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Figure 1: Configuration of the generalized sidelobe canceller
(GSC).

where β is a positive constant, which is typically set to three in
order to ensure that the Gaussian pdf has zero kurtosis, pdfs with
positive kurtosis are super-Gaussian, those with negative kurtosis
are sub-Gaussian. Note that the empirical kurtosis measure can be
computed without knowledge of the actual pdf of subband samples
of speech, which is its primary advantage over other measures of
non-Gaussianity. However, the empirical kurtosis can be greatly
influenced by a few samples with a low observation probability;
Hyvärinen and Oja [5] note that negentropy is generally more robust
in the presence of outliers than kurtosis.

2.2. Generalized Sidelobe Canceller Beamforming

Consider a subband beamformer in the generalized sidelobe can-
celler (GSC) configuration [4, §13.6] shown in Figure 1. Let us
first denote the input subband snapshot vector at frame k as X(k)
where the frequency index is omitted. The output of a beamformer
at frame k can be expressed as

Y (k) = [wq(k)−B(k)wa(k)]
H X(k), (2)

where wq(k) is the quiescent weight vector for a source, B(k) is
the blocking matrix, wa(k) is the active weight vector. In this work,
we suppress indices for frquency bins. In keeping with the GSC
formalism, wa(k) is chosen to give unity gain in the desired or look
direction [4, §13.6]; i.e., to satisfy a distortionless constraint. The
blocking matrix B(k) is chosen to be orthogonal to wq(k), such
that BH(k)wq(k) = 0. This orthogonality implies that the distor-
tionless constraint will be satisfied for any choice of wa(k).

While the active weight vector is typically chosen to minimize
the variance of the beamformer’s outputs, here we develop on online
optimization procedure to find that wa(k) which maximizes kurto-
sis. Maximizing the degree of super-Gaussianity yields the active
weight weight vector capable of canceling interference—including
incoherent noise that leaks through the sidelobes—without the sig-
nal cancellation problems encountered in the MVDR beamformers.

We perform subband analysis and synthesis processing with a
uniform DFT filter bank based on the modulation of a single pro-
totype impulse response [4, §11], which was designed to minimize
each aliasing term individually [6]. For experiments described in
section 3, we used the filter prototype with 1024 subbands, the
length of the prototype was 2048 and the decimation factor which
corresponds to the frame shift was 128. Those values are chosen
based on our prior work [1, 2, 3].

2.3. Estimation of the Active Weight Vector

In [1], the kurtosis of the beamformer’s output was computed over
an entire utterance. While such an algorithm is feasible for rela-
tively small arrays of eight elements, it becomes computationally
intractable for the large array considered in this work. It also has
an unacceptably slow response when a long utterance must be pro-
cessed.
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Figure 2: Visualization of the block-wise estimation of the active
weight vector.

In our prior work, we minimized kurtosis of the beamformer’s
output computed with all the incoming snapshots consisting of K
frames. Such a cost function can be written as

J(Y ) =
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Clearly, the computational amount becomes significant as the num-
ber of the input snapshots K is large. Hence, we incrementally
update the active weight vector at each block b consisting of Lb

samples here. Accordingly, the beamformer’s output of (2) should
be precisely re-rewritten as

Y (k) = [wq(k)−B(k)wa(bk/Lbc)]H X(k). (4)

where b.c is the floor function and bk/Lbc indicates the block index
b. The kurtosis for a block of Lb samples starting from frame bs can
be expressed as

Jb(Y ) =

0@ 1

Lb

bs+Lb−1X
k=bs

|Y (k)|4
1A− β

0@ 1

Lb

bs+Lb−1X
k=bs

|Y (k)|2
1A2

.

(5)
where bs is zero at the first input sample and shifted with Lb after

one block is processed.
In order to improve robustness by inhibiting the formation of

excessively large sidelobes, we apply a regularization term [4] to
the cost function (5) and have the modified optimization criterion

J b(Y ;α) = Jb(Y )− αE{‖wa(b)‖2} (6)

where we set α = 0.1 based on the results of the speech recognition
experiments in prior work [1, 2, 3]. In addition to the regularization
term, we also impose a constraint on a norm of the active weight
vector so as to prevent it from exceeding that of the quiescent vector.

We estimate the active weight vector which maximizes the sum
of the kurtosis and regularization term (6) under the norm constraint
at each block . Figure 2 visualizes with a spectrogram that the active
weight vector is estimated with each block of the subband samples.

In the absence of a closed-form solution, we resorted to the
gradient descent algorithm [7, §1.6]. Upon substituting (5) into (6)
and taking the partial derivative with respect to the active weight
vector, we obtain
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Figure 3: A flow chart of our distant speech recognition system.
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(7)

The gradient (7) is repeatedly calculated with a block of subband
samples until it converges. For the gradient algorithm, the ac-
tive weight vectors are initialized with the estimates at the previ-
ous block; the first block is initialized with active weights of zero.
Our preliminary experiments revealed that this block-wise batch
method is able to track a non-stationary sound source, and provides
a more accurate gradient estimate than sample-by-sample update
algorithms.

The beamforming algorithm can be summarized as follows:

1. Initialize the active weight with wa(0) = 0.

2. Given estimates of time delays, calculate the quiescent vec-
tor and blocking matrix.

3. For each block of input subband samples, b = 1, 2, · · · ,
repeat estimation of the active weight vector wa(b) based
on the gradient information computed with (7) subject to the
norm constraint until it converges.

4. set the initial active weight vector for the next block with the
current estimate as wa(b+1)⇐ wa(b) and go to the step 2.

3. EXPERIMENTS

Figure 3 shows a flow chart of the distant speech recognition (DSR)
system used in our experiments. Our DSR system involves the
time delay estimation based on the phase transformation [4, §10.1].
Then, the channels for beamforming are selected based on the
method described in [8]. Following beamforming, Zelinski post-
filtering [9], a variant of Wiener filtering, is carried out in order to
remove the noise uncorrelated among the sensors.

We use a weighted finite-state transducer (WFST) decoder [4,
§7.2] for speech recognition experiments. The feature extraction
used for the ASR experiments reported here was based on cepstral

features estimated with a warped minimum variance distortionless
response (MVDR) spectral envelope of model order 30 [4, §5.3].
Front-end analysis involved extracting 20 cepstral coefficients per
frame of speech, and then performing cepstral mean normalization
(CMN). The final features were obtained by concatenating 15 con-
secutive frames of cepstral coefficients together, then performing
linear discriminant analysis (LDA), to obtain a feature of length 42.
The LDA transformation was followed by a second CMN step, then
a global semi-tied covariance transform estimated with a maximum
likelihood criterion [10]. The details of training procedures for
acoustic models are described in [8].

In our experiments, the ASR system consisted of three passes:

1. Recognize with the unadapted conventionally trained model;

2. Estimate vocal tract length normalization (VTLN) [11],
maximum likelihood linear regression (MLLR) [12] and
constrained maximum likelihood linear regression (CM-
LLR) [13] parameters, then recognize once more with the
adapted conventionally trained model;

3. Estimate VTLN, MLLR and CMLLR parameters for the
SAT model, then recognize with the adapted model.

For all but the first unadapted pass, unsupervised speaker adaptation
was performed based on word lattices from the previous pass.

3.1. Recognition results

Test data for experiments were collected at the Carnegie Mellon
University Children’s School. The speech material in this corpus
was captured with a 64-channel Mark IV microphone array; the ele-
ments of the Mark IV were arranged linearly with a 2 cm intersensor
spacing. In order to provide a reference for the DSR experiments,
the subjects of the study were also equipped with Shure lavelier
microphones with a wireless connection. This was required to en-
able voice prompt suppression experiments. All the audio data were
captured at 44.1 kHz with a 24-bit per sample resolution.

The test set consists of 354 utterances (1,297 words) spoken
by nine children. The children were native-English speakers (aged
four to six). They were asked to play Copycat, a listen-and-repeat
paradigm in which an adult experimenter speaks a phrase and the
child tries to copy both pronunciation and intonation. As is typical
for children in this age group, pronunciation was quite variable and
the words themselves sometimes indistinct.

The search graph for the recognition experiments was created
by initially constructing a finite-state automaton by stringing Copy-
cat utterances in parallel between a start and end state. This ac-
ceptor was convolved together with a finite-state transducer repre-
senting the phonetic transcriptions of the 147 words in the Copycat
vocabulary. Thereafter this transducer was convolved with the HC
transducer representing the context-dependency decision tree esti-
mated during state-clustering [4, §7.3.4].

Table 1 shows word error rates (WERs) of every decoding pass
obtained with one of 64 microphones, super-directive (SD) beam-
forming, maximum kurtosis (MK) beamforming and lapel micro-
phone. Here, the active weight vectors of the MK beamformer were
incrementally adapted with 2.5 seconds of block data. In Table 1,
the numbers of channels is automatically determined by the dis-
criminant method [14]. The number of channels used for beam-
forming ranged from 33 to 62 and the average was 45.

Table 1 demonstrates that the improvement from the adaptation
techniques is dramatic. The reduction in the WER from the first
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Pass (%WER)
Algorithm 1 2 3

Single distant microphone 38.1 19.8 15.4
SD beamforming 24.4 9.6 7.6
MK beamforming 25.1 9.0 6.5
Lapel microphone 19.3 5.9 5.2

Table 1: Word error rates (WERs) for children’s speech at each
decoding pass.

Figure 4: WER after the third recognition pass as a function of the
duration of the adaptation data.

pass to the third is approximately four-fold in the case of MK beam-
forming. It is also clear that the performance of far-field speech
recognition can be improved by beamforming techniques, and the
MK beamforming algorithm achieves the best performance in the
experiments. The MK beamforming technique provides almost the
same recognition performance as the lapel microphone. In contrast
to the MVDR beamformers, the MK beamformer can be adapted
when the target signal is present.

Figure 4 shows WERs of the MK beamformer as a function of
the duration of the block of data used for adaptation. In Figure 4, the
WER of the SD beamformer is illustrated as a reference. It is clear
from Figure 4 that the larger the amount of the block data is, the
better recognition performance is. It is also clear from Figure 4 that
the WERs of the MK beamformer are higher than those obtained
with SD beamforming when the block size is smaller than 500 milli-
seconds. These results suggest that stable estimation of the active
weight vectors requires a certain amount of the block data.

4. CONCLUSIONS

In this work we have proposed the online maximum kurtosis beam-
former. We have demonstrated that this algorithm, while remain-
ing computationally tractable, provides superior performance to the
super-directive design. We also analyzed how much data is required
for stable estimation of the active weight vector.

We plan to develop the estimation method of the active weight
vector with a variable block length in order to find short, station-
ary segments. We also plan to combine conventional beamforming
algorithms to enhance the convergence speed. Finally, we plan to
integrate beamforming more tightly with the voice prompt suppres-
sion algorithms discussed in [15].
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