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ABSTRACT

In earlier work, we proposed a voice prompt suppression (VPS)
algorithm based on a Kalman filter, in which the temporal update or
correction step is performed in information space. The advantage
of this approach is that the information matrix can be diagonally
loaded in order to control the magnitude of the subband filter co-
efficients, which provides for better robustness. In this work, we
extend that earlier work by proposing a square root implementation
of the information filter VPS algorithm, as well as a technique for
diagonally loading the Cholesky factor of the error covariance ma-
trix used in this implementation. We also investigate the effective-
ness of cascading VPS after maximum kurtosis beamforming, which
has been shown to provide performance superior to all conventional
beamforming techniques. In a set of distant speech recognition ex-
periments we demonstrate that VPS can reduce word error rate from
19.9% to 16.1% for an adult speaker, and from 44.4% to 40.0% for
a child.

Index Terms— acoustic echo cancellation, speech recognition,
beamforming, information filter

1. INTRODUCTION

Modern speech enabled applications provide for dialog between
a machine and one or more human users. The machine prompts
the user with queries that are either prerecorded or synthesized on
the fly. The human users respond with their own voices, and their
speech is then recognized and understood by a human language un-
derstanding module. In order to achieve as natural an interaction
as possible, the human user(s) must be allowed to interrupt the ma-
chine during a voice prompt. This implies that the recognition en-
gine must be running even during the voice prompt; hence, the ca-
pacity to suppress the voice prompt in the signals captured by one
or more far-field microphones is essential. The task of voice prompt
suppression (VPS) is similar to that of acoustic echo cancellation
(AEC).

In McDonough et al. [1], we proposed a VPS algorithm based
on a Kalman filter, in which the temporal update or correction is
performed in information space. The advantage of this approach
is that the information matrix can be diagonally loaded in order to
control the magnitude of the subband filter coefficients, which pro-
vides for better robustness. In this work, we extend that earlier work
by proposing a square root implementation of the information filter
VPS algorithm. It is well known that square root implementations—
both of covariance and information forms of the Kalman filter—
effectively double the numerical precision of the respective algo-

rithms [2, §6.3–6.4]. Moreover, the square root implementations
elminate the explosive divergence phenomenon to which the direct
form implementations are prone [3, §11]. The latter occurs when
the error covariance matrices—which by definition must be posi-
tive definite—that are propagated forward in time during the state
estimate update inhherent in a Kalman filter can become indefinite
due to finite precision effects. As the Cholesky factorization exists
solely for positive definite matrices, stipulating that the Cholesky
decomposition exists is equivalent to requiring that the error covari-
ance matrix remains positive definite.

Kumatani [4] proposes an adaptive beamforming algorithm
based on a maximum kurtosis (MK) optimization criterion, and
demonstrates that this algorithm provides performance superior to
the conventional super-directive (SD) beamformer [5, §13.3.4] in
a series of distant speech recognition (DSR) experiments. Here,
we investigate the effectiveness of cascading VPS after MK beam-
forming. It is also possible to perform VPS on the signal from each
sensor in a microphone array prior to beamforming [6, §13.4.4],
although we do not investigate that approach in the present work.

The balance of this work is organized as follows. In Section 2,
we review the conventional covariance Kalman filter techniques for
voice prompt suppression (VPS). We also present the VPS algo-
rithm based on the information Kalman filter proposed here and
discuss its similarities and differences with the covariance form of
the filter. We then present a square root implementation of the infor-
mation filter, as well as a novel technique for performing diagonal
loading on the Cholesky factor of the information covariance ma-
trix. Finally, our initial DSR results comparing the performance
of beamforming when followed by both the direct and square root
forms of the information filter are presented and discussed in Sec-
tion 3.

2. THE INFORMATION FILTER

In this section, we describe the components of a VPS system. We
then briefly present the operational details of the covariance form of
the Kalman filter, as well as those of both the direct and square root
implementations of the information filter.

2.1. Voice Prompt Suppression

Let us define the following components of our voice prompt sup-
pression system:

• V (z) denotes the transform of the known voice prompt;
• S(z) denotes the transform of the unknown desired speech;
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• R(z) ,
PL−1

n=0 r[n]z−n denotes the transform of FIR filter
simulating the room impulse response;

• G(z) is the transform of the actual, unknown room impulse
response (RIR) for the voice prompt;

• H(z) is the transform of the actual, unknown RIR for the de-
sired speech;

• A(z) , G(z)V (z)+H(z)S(z) is the combined signal reach-
ing a single channel of the microphone array;

• E(z) , A(z)−R(z)V (z) is the residual signal after removal
of the voice prompt.

We will assume that the desired speech is a stochastic zero-mean
process such that E{S(ejω)} = 0, for all −π ≤ ω ≤ π. The
voice prompt V (z), on the other hand, is assumed to be a known
signal. The complete system for voice prompt suppression is shown
schematically in Figure 1.

R(z) G(z) H(z)

V(z) S(z)

S

S

P(z)

A(z)
+_

E(z)

Figure 1: Block diagram for voice prompt suppression.

Based on the definitions above, we can formulate the VPS
problem as one of minimizing the spectral energy of E(z) =
A(z)−V (z)R(z) whenever only the voice prompt is active. Posed
as such, the VPS problem is tantamount to determining the mini-
mum mean square error (MMSE) solution for the subband filter co-
efficients R(z). It is well known that the MMSE solution is equiva-
lent to the estimate of the conditional mean provided by the Kalman
filter [5, §4.1]. Moreover, the Kalman filter formulation is attractive
because it subsumes the recursive least squares (RLS) formulation,
and—as we discuss in the next section—provides for finer control
of the evolution of the subband filter coefficients through the inclu-
sion of both a transition matrix and a process noise.

2.2. Kalman Filter Formulation

Given the state xk and observation yk at time k, the state model of
the Kalman filter can be expressed as

xk = Fk|k−1 xk−1 + uk−1, (1)
yk = Hkxk + vk, (2)

where Fk|k−1 and Hk are the known transition and observation
matrices. The noise terms uk−1 and vk in (1–2) are by assumption
zero mean, white Gaussian random vector processes with covari-
ance matrices Uk , E{ukuH

k } and Vk = E{vkvH
k }, respec-

tively. Moreover, by assumption uk and vk are statistically inde-
pendent.

Let x̂k|k−1 denote the predicted state estimate at time k using
all observations up to time k − 1. Moreover, let y1:k−1 denote all
past observations up to time k−1, and let ŷk|k−1 denote the MMSE
estimate of the next observation yk given all prior observations,
such that, ŷk|k−1 = E{yk|y1:k−1}. By definition, the innovation
is the difference

sk , yk − ŷk|k−1 (3)

between the actual and the predicted observations. This quantity
is given the name innovation, because it contains all the “new in-
formation” required for sequentially updating the filtering density
p(x0:k|y1:k−1); i.e., the innovation contains that information about
the time evolution of the system that cannot be predicted from the
state space model (1–2).

Let us begin our exposition of the Kalman filter by stating how
the predicted observation may be calculated based on the current
state estimate, according to

ŷk|k−1 = Hkx̂k|k−1. (4)

In light of (3) and (4), we may write

sk = yk −Hkx̂k|k−1. (5)

Substituting (2) into (5), we find

sk = Hkεk|k−1 + vk, (6)

where εk|k−1 , xk− x̂k|k−1 is the predicted state estimation error
at time k, using all data up to time k − 1. It can be readily shown
that εk|k−1 is orthogonal to uk and vk [3, §10.1]. Using (6) and
exploiting the statistical independence of uk and vk, the covariance
matrix of the innovations sequence can be expressed as

Sk , E
n

sksH
k

o
= HkKk|k−1H

H
k + Vk, (7)

where the predicted state estimation error covariance matrix is de-
fined as

Kk|k−1 , E
n

εk|k−1ε
H
k|k−1

o
. (8)

The sequential update of the Kalman filter can be partitioned
into two steps:

• First, there is a prediction, which can be expressed as

x̂k|k−1 = Fk|k−1x̂k−1|k−1. (9)

Clearly the prediction is so-called because it is made without
the advantage of any information derived from the current ob-
servation yk.

• The latter information is instead folded into the current esti-
mate through the update or correction, according to

x̂k|k = x̂k|k−1 + Gksk, (10)

where the Kalman gain is defined as

Gk , E{xksH
k }S−1

k , (11)

sk and Sk are given by (5), and (7), respectively, and x̂k|k de-
notes the filtered state estimate using all observations y1:k. Note
that (10) is of paramount importance, as it shows how the MMSE
or Bayesian state estimate can be recursively updated. To wit, it is
only necessary to premultiply the prior estimate x̂k|k−1 by the tran-
sition matrix Fk|k−1, then to add a correction factor consisting of
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the Kalman gain Gk multiplied by the innovation sk. Hence, the
entire problem of recursive MMSE estimation under the assump-
tions of linearity and Gaussianity reduces to the calculation of the
Kalman gain (11), whereupon the state estimate can be updated ac-
cording to (10). From (9) and (10), we deduce that the KF has
the predictor-corrector structure shown in Figure 2. The Kalman

+
+

-
yk +Gk

Fk|k-1 z-1I

sk xk|k

Hk

ˆ

yk|k-1ˆ

xk|k-1ˆ

xk-1|k-1ˆ

Figure 2: Predictor-corrector structure of the Kalman filter.

gain (11) can be efficiently calculated according to

Gk = Kk|k−1H
H
k S−1

k , (12)

where the covariance matrix Sk of the innovations sequence is de-
fined in (7). The Riccati equation then specifies how Kk|k−1 can
be sequentially updated, namely as,

Kk|k−1 = Fk|k−1 Kk−1 FH
k|k−1 + Uk−1. (13)

The matrix Kk in (13) is, in turn, obtained through the recursion,

Kk = (I−GkHk)Kk|k−1. (14)

This matrix Kk can be interpreted as the covariance matrix of the
filtered state estimation error [3, §10], such that, Kk ,

˘
εkεH

k

¯
,

where εk , xk− x̂k|k. Note the critical difference between εk|k−1

and εk, namely, εk|k−1 is the error in the state estimate made with-
out knowledge of the current observation yk, while εk is the error
in the state estimate made with knowledge of yk.

In order to formulate the voice prompt suppression system as
a Kalman filter, we associate the state xk with the subband coeffi-
cients ofR(z), and the observation matrix (vector) Hk with the cur-
rent and delayed subband samples of V (z). Moreover, the (scalar)
observation yk is associated with the signal A(z) arriving at the
microphone. The scalar observation noise vk is associated with the
termH(z)S(z), the variance of which can be estimated with a slid-
ing exponential window

σ̂2
u,m(k) = (1− λ)σ̂2

u,m(k − 1)− λ |Em(k)|2, (15)

where 0 < λ < 1 is a forgetting factor that controls how quickly
past observations are discounted. Note that the update in (15)
should be performed exclusively when the voice prompt is not ac-
tive. The innovation sk is then associated with the error term E(z).
The transition matrix Fk|k−1, the covariance matrix Uk−1 of the
process noise, and the initial value assigned to the error covariance
matrix Kk can be treated as system parameters to be tuned for op-
timal performance.

2.3. Information Filter Formulation

The Fisher information matrix and information vector are defined
as

Zk , K−1
k , (16)

d̂k|k−1 , Zk|k−1x̂k|k−1, (17)

respectively. The temporal update or prediction in information
space is performed according to [7, §6.8]

Ak , F−H
k Zk−1F

−1
k , (18)

Zk|k−1 =
h
I−Ak

`
Ak + U−1

k−1

´−1
i
Ak, (19)

d̂k|k−1 =
h
I−Ak

`
Ak + U−1

k−1

´−1
i
F−H

k d̂k−1|k−1. (20)

Alternatively, it is possible to simply calculate Kk = Z−1
k , per-

form the temporal update as in (13), then invert Kk|k−1; we chose
to implement our direct form information filter using this latter
more “naive” approach, taking care to calculate numerically well-
conditioned inverses. The observational update or correction in the
information filter is then performed according to [7, §6.8]

Zk = Zk|k−1 + HH
k V−1

k Hk, (21)

d̂k|k = d̂k|k−1 + HH
k V−1

k yk. (22)

Once Zk has been calculated from (21) it can be diagonally
loaded according to Z′k = Zk + σ2

DI, whereupon the updated state
vector (i.e., the subband filter coefficients) can be calculated accord-
ing to

Kk =
`
Z′k
´−1

, (23)

x̂k|k = Kk d̂k|k. (24)

At this point, all is ready for the next time step. The larger the diago-
nal loading term σ2

D, the smaller the final subband filter coefficients,
which is apparent from (23–24). The magnitude σ2

D of the diagonal
loading can be treated as yet another system parameter to be tuned
for optimimum performance.

2.4. Square Root Information Filter Formulation

In the square-root implementation, it is not Zk that is propagated
forward in time, but rather the lower triangular Cholesky factor
Z

1/2
k , which achieves [7, §6.8]

Zk = Z
1/2
k Z

H/2
k . (25)

Moreover, the information vector (17) is replaced with the square
root information state

zk , ZH/2xk. (26)

Prediction then proceeds by calculating an orthogonal matrix Θpred

that imposes a lower triangular structure on the prearray such that264U
−1/2
k−1 −F−H

k|k−1Z
1/2
k−1

0 F−H
k|k−1Z

1/2
k−1

0 ẑH
k−1|k−1

375Θpred =

24B11 0

B21 Z
1/2

k|k−1

bH
31 ẑH

k|k−1

35 , (27)

where the terms B11, B12, and b31 need not be retained. Demon-
strating that (27) is equivalent to (18–20) involves applying the ma-
trix factorization lemma [3, §11.1] to the former, and then showing
that

B11 =
`
Ak + U−1

k−1

´1/2
,

B21 = −Ak

`
Ak + U−1

k−1

´−H/2
, and

b31 = −
`
Ak + U−1

k−1

´−1/2
F−1

k|k−1d̂k−1|k−1.
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Correction is performed by calculating a second orthogonal matrix
Θcorr achieving"

Z
1/2

k|k−1 HH
k V

−1/2
k

zH
k|k−1 yH

k V
−1/2
k

#
Θcorr =

»
Z

1/2
k 0

zH
k|k β

–
, (28)

where the scalar β is not required. Diagonal loading is performed in
square root information space by calculating yet another orthogonal
matrix Θdiag that achievesh

Z
1/2
k σD en

i
Θdiag =

ˆ
(Z′k)1/2 0

˜
, (29)

where en is the nth unit vector. This loading (29) must be re-
peated for each diagonal element of Z

1/2
k . Performing diagonal

loading in this manner was described in [5, §13.4.4] for RLS beam-
forming, but—to the authors’ knowledge—this is the first instance
wherein this algorithm has been proposed for subband adaptive fil-
tering or voice prompt suppression. In our experiments, we con-
structed Θpred, Θcorr, and Θdiag from series of Givens rotations, but
Householder transformations could be used as well [7, §6.8].

Once zH
k|k has been determined, the new filter coefficients can

be calculated through forward substitution on ẑk|k = ZH/2x̂k|k.

3. DISTANT SPEECH RECOGNITION EXPERIMENTS

The data collection scenario used for the DSR experiments de-
scribed here was a simple listen-and-repeat task known as Copycat,
in which children were shown an illustration of an object and asked
to repeat the referring phrase spoken by the experimenter (e.g., “I
want the dragon’s tail,” or “Give her the crown”). To obtain a large
number of segments of high overlap between a voice prompt and
speech of the subjects, the former was artificially mixed with the
latter after capture with far-field microphones. All far-field data
capture was conducted with a 64 channel linear microphone array
with an intersensor spacing of 2 cm. Further details of the sensor
configuration used to capture the far-field data are given in [8].

Our basic DSR system was trained on three corpora of chil-
dren’s speech as described in [8]. The conventional model had
1,200 states and a total of 25,702 Gaussian components. Conven-
tional training was followed by speaker-adapted training (SAT) as
described in [5, §8.1.3]. Details of the front end used for feature
extraction in our system are given in [8].

Our experiments involved three passes of speech recognition:

1. Recognize with the unadapted conventionally-trained model;

2. Estimate vocal tract length normalization (VTLN) [5,
§9.1.1], maximum likelihood linear regression (MLLR) [5,
§9.2.1] and constrained maximum likelihood linear regres-
sion (CMLLR) [5, §9.1.2] parameters, then recognize once
more with the adapted conventially-trained model;

3. Estimate VTLN, MLLR and CMLLR parameters for the
SAT model, then recognize with same.

For all but the first unadapted pass, unsupervised speaker adaptation
was performed on word lattices from the previous pass.

The test set consisted of four sessions of the Copycat scenario.
There were a total of 354 utterances and 1,297 words spoken by the
children subjects. A total of 356 utterances and 1,305 words were
spoken by the experimenter.

For the experiments described below, the variable system pa-
rameters were set as F = I, σ2

D = 10−4, Uk = 10−4 · I, and

K0 = 5 ·I. In particular, we choose the diagonal elements of K0 to
be much larger than those of Uk so that the filter coefficients would
converge rapidly at the start of the utterances from a given speaker,
but would not oscillate once they had reached a more or less steady
state.

The results of our DSR experiments—reported in terms of word
error rate (WER)—using both implementations of the information
filter are presented in Table 1; for these comparisons, VPS was per-
formed after beamforming. Also shown in the table are the results
obtained with MK beamforming without VPS. These results reveal

Pass
1 2 3

Type Lfilt Exp. Child Exp. Child Exp. Child
None 37.7 60.0 19.9 44.4 18.4 41.9
Direct 4 30.5 57.3 15.9 41.2 16.9 41.7

8 31.2 57.6 17.1 42.3 16.7 43.0
16 31.1 58.1 17.5 40.0 17.1 43.2

S/R 4 30.3 55.9 16.3 40.9 15.2 44.0
8 31.0 56.7 16.1 40.0 16.7 42.3
16 31.4 56.8 17.3 40.9 17.3 43.4

Table 1: Word error rates (WERs) for several subband filter lengths
using both the direct form and square root (S/R) implementation
of VPS after MK beamforming; also shown are comparable results
with no VPS.

that both implementations of VPS provide reductions in error rate,
although the square root implementation is arguably more consis-
tent. In particular, applying VPS based on the square root imple-
mentation with a filter length of Lfilt = 8 reduces WER from 19.9%
to 16.1% for the adult experimenter, and from 44.4% to 40.0% for
the children subjects after the second pass. Oddly enough, the third
pass of recognition is largely ineffective in reducing WER with re-
spect to the second pass when VPS is applied.
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