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ABSTRACT
We describe the creation of a linguistic plausibility dataset that

contains annotated examples of language judged to be linguistically
plausible, implausible, and every-thing in between. To create the
dataset we randomly generate sentences and have them annotated
by crowd sourcing over the Amazon Mechanical Turk. Obtaining
inter-annotator agreement is a difficult problem because linguistic
plausibility is highly subjective. The annotations obtained depend,
among other factors, on the manner in which annotators are ques-
tioned about the plausibility of sentences. We describe our experi-
ments on posing a number of different questions to the annotators,
in order to elicit the responses with greatest agreement, and present
several methods for analyzing the resulting responses. The generated
dataset and annotations are being made available to public.
Index Terms: Sense. Speech recognition. Mechanical Turk.

1. INTRODUCTION

The following word sequences are from the top-N hypotheses of an
automatic recognizer decoding a spoken utterance. Only one of them
is correct.

• people are close population getting older

• people are closer population getting older

• people are course population getting older

• people are clocks population’s getting older

By this time the reader has probably already determined that the
fourth hypothesis is the most correct one.

The above example illustrates a problem. The most correct hy-
pothesis was not the top hypothesis of the recognizer. But the human
reader was immediately able to recognize it based only on the con-
tent of the text, without listening to the audio. Brill [1] has demon-
strated that humans are remarkably good at this task. Over a collec-
tion of corpora, subjects were able to select a better hypothesis from
an N -best list such that word error rate improved by 17%-60% of the
maximum achievable over the top hypothesis from the recognizer.

It is generally accepted that the problem of automatic speech
recognition could largely be solved if it were possible to computa-
tionally replicate this human ability to accurately identify a correct
(or most correct) hypothesis from an N-best list, based on their word
content. However, arriving at a mechanism that can actually achieve
this has been difficult. Various approaches have been proposed for
evaluating features that consider sentences as a whole, e.g the statis-
tical trigger-pair models of [2], syntactic parse based method of [3]
and semantic-coherence based methods [4] among a host of others,
but the actual improvement in speech recognition accuracy obtained
by employing these methods to select or re-rank word-sequence hy-
potheses has been minimal.

A large reason for the failure of these approaches is that they are
primarily learned from positive examples, since the vast majority of

textual corpora comprise sentences that people did say or write; they
are never presented with negative examples, sentences that people
would not say, primarily because a corpus of such text does not ex-
ist. Thus while they learn to effectively accept, i.e. parse or give high
scores to word patterns that are correct, they are not effective at re-
jecting patterns that are not, particularly when the sentences conform
to a generative model such as an N-gram LM. While some authors
(e.g. [2]) have attempted to simulate negative examples by random
generation of sentences from an N-gram LM, this is not a satisfac-
tory solution; as we shall see later, humans would consider a large
fraction of randomly generated word sequences to be acceptable or
meaningful.

What is required, then, is a large corpus of text that includes
both positive and negative examples, appropriately annotated. I.e.
we require an corpus which includes both acceptable (as judged by
a human), and unacceptable (also as judged by a human) sentences,
which have been correctly annotated as such, such that NLP algo-
rithms can be discriminatively trained to accurately distinguish be-
tween what is acceptable language and what is wrong. We refer to
such a corpus as a linguistic-plausibility dataset.

This paper deals with the design of such a corpus. We de-
scribe the creation of a human-annotated dataset of explicit positive
and negative examples of linguistic plausibility. Our approach is to
present randomly generated sentences to multiple human annotators
and instruct them to tag the sentences as meaningful or not.

“Plausibility” is however very subjective and hard to define, and
annotating plausibility is akin to semantic annotation. Even when a
clear formalism is specified for the annotation, inter-annotator dis-
agreement tends to be high in semantic annotation tasks [5, 6]. In
our context, unlike other annotation tasks, there is no ground truth.
Rather, we are simply gathering subjective human judgments about
the plausibility of the word sequence as a part of normal human
speech or writing. The responses we will elicit from the annota-
tors may be expected to be dependent on various factors relating to
the personal context of the annotator, but more importantly on the
manner in which the query about the plausibility of the sentence is
posed. While we may have no control on the former factors, we do
have control on the manner in which the question is posed.

Ideally, we would like to pose the query (that asks the annota-
tor if a sentence is plausible) in a manner such that the responses
have high inter-annotator agreement, such that positive examples are
normal, meaningful sentences and negative examples are fundamen-
tally semantically invalid. However we recognize that such a query
is unlikely to exist for most sentences.

In this paper we explore different manners in which this query
can be posed in order to obtain maximal inter-annotator agreement.
We pose the question about the the plausibility of sentences to the
annotators in a number of different ways to determine which one
results in the maximal inter-annotator agreement. On a small ex-
ploratory set of 100 sentences each of which was tagged by 10 anno-



tators, we find that the best of our queries gives us an average 66%
inter-annotator agreement, and that on the same query nearly 50% of
the sentences had an inter-annotator agreement of 80% or greater.

Two other key issues about the generation of such a corpus are
a) how the sentences are generated, b) who the annotators are. We
desire our corpus to be relatively unspecific to any domain, as our in-
tention is to produce a corpus that captures a general notion of plau-
sibility (which does exist beyond the extended scope of plausibility
within specialized domains). We therefore generate sentences from
a trigram LM produced from the Google N-gram data [7], which
cover a vast array of topics and are not specific to any domain. We
aimn to eventually produce a large corpus of annotated sentences.
Obtaining expert taggers to tag such a corpus is both expensive and
inefficient. We therefore use the Amazon Mechanical Turk to obtain
inexpensive human taggers. Although the taggers are not experts
and the tagging process is not carefully controlled, we believe that
utterances with high inter-annotator agreement can be assumed to be
reliably tagged.

The initial effort described in this paper is relatively small and
exploratory – only a total of 100 sentences were tagged. Never-
theless the results obtained are informative. All sentences and the
obtained tags are being made public. It is our intention to follow this
up with a much larger annotation task where a corpus of several tens
of thousands of sentences will be tagged. These sentences too will
be made freely available to public.

The rest of the paper is arranged as follows. In Section 2 we
describe how we generate the dataset. In Section 3 we describe our
setup for obtaining annotations, including the queries asked. In Sec-
tion 4 we analyze the obtained results. Finally in Section 5 we pro-
vide our conclusions.

2. A LINGUISTIC-PLAUSIBILITY DATASET

Linguistic plausibility as we consider it in this paper is subjective.
Therefore, we will not attempt to define it formally. Rather, linguis-
tic plausibility is approximately language for which people would
often answer “yes,” to the question of: Is this something a person
might say? The basic units of this dataset are “sentences.” The con-
cept of sentence connotes grammaticality and at least a modicum of
semantic coherence, so perhaps “utterance” or “word sequence” bet-
ter describes the units of this dataset. However, we will refer to them
as “sentences” in this paper.

Since written human language typically has some degree of
meaning and coherence, we cannot simply harvest sentences from
human-written or human-spoken language. It will not provide the
desired negative examples. Instead, we artificially generate random
sentences using a statistical N-gram LM. This ensures that the sen-
tences, on the surface, appear to be real human-written sentences,
and sometimes do make sense (i.e. are clearly plausible). However,
the lack of a real, human author ensures that the data contains plenty
of “nonsense” sentences, as well as many with intermediate degrees
of sense.

We use a 3-gram language model derived from Web N-gram
counts provided by Google through LDC [7]. The motivation behind
using Google N-grams is that they have been derived from massive
amounts of text and are possibly the best representation of domain-
independent relative frequencies of word N-grams currently avail-
able. We can therefore expect to generate text that is not specific to
any domain and may even switch topics within a sentence – a phe-
nomenon that is not infrequent in human speech.

Here are a few examples of sentences randomly generated by
our model:

• All departments babies

• Back to the islands as well as our new app server

• Driven by the listers or their representatives are so many can
say yes

Very short word sequences generated by this model are typi-
cally difficult to make sense of one way or another, and long word
sequences are almost always nonsense since the LM has more op-
portunities to jump from topic to topic. Because of this, we limit
the dataset to randomly generated sentences of moderate length:
eight to twelve words long. Additionally, we conflated differences
in case, and removed tokens containing non-alphabetic characters.
Here is one sentence generated by this model that was overwhelm-
ingly judged to make sense:

• From casual to classic in design and preparation

Here is one that was overwhelmingly judged to be nonsense:

• A small fishing village in the same day delivery gift shop

3. TAGGING THE DATASET WITH NON-EXPERT
ANNOTATORS

The Amazon Mechanical Turk was employed to tag the generated
sentences. The Mechanical Turk is a web service that acts as an ex-
change where subscribers may post tasks which will be performed by
other subscribers, who we will call “providers”, for a fee. The Turk
provides various mechanisms for determining the number of tasks
performed by a particular provider, to ensure that tasks do not get
posted to the same provider twice, to time tasks etc. In our task, au-
tomatically generated sentences were posted on the Mechanical Turk
and providers were instructed to annotate their plausibility. While it
is also possible to restrict the geographic location of providers and
to employ other such filters on the Mechanical Turk, we did not fil-
ter the providers, ensuing only that the same annotation task was
not sent to any person twice. As a result, there was no guarantee
of linguistic expertise on the part of the annotators evaluating the
sentences; most of them were almost certainly non expert.

Due to the inherent subjectivity of this task, one of the biggest
challenges is how to elicit as consistent responses as possible from
non-experts. Intuitively, plausible sentences must be sensible. In our
experience, it is exceedingly confusing to non-experts to simply ask
them “does this sentence make sense?” This is not surprising; in the
appropriate context, almost any sequence of words generated might
be considered to make sense, or not make sense. For instance, just
as “flying a broom to London” might make sense in a Harry Potter
novel, “their spouses listed in the Ministry of Health and Racquetball
Courts” would make sense in a country that has a ministry of health
and racquetball courts!

This subjectivity may be exacerbated when judges are asked to
actually think about whether or not a sentence makes sense. That is,
the more one thinks about such things, the foggier their conclusions
are and the less certain they become about their decisions. Linguists
who are familiar with doing grammaticality judgments are likely fa-
miliar with this phenomenon: the more one thinks about the gram-
maticality of a sentence, the harder it becomes to remember and de-
cide what is grammatical and what is not.

So, on the one hand, we would like to “trick” people into answer-
ing using their “gut” instinct without thinking too hard, but on the
other hand, the task needs to be concrete, clear, and directed enough
that our judges are neither confused nor neglecting the task through
carelessness. The problem thus becomes that of posing questions to



the annotators in a manner that will elicit a consistent and meaning-
ful response.

3.1. Methods of eliciting sensicality judgments from subjects

Given the above factors, we posted generated sentences with five
different questions. Each annotator was presented with one of the
questions and a set of sentences to tag. No annotator got the same
sentence twice or two different questions. The exact text of each
question can be found on the first author’s website . The questions
we asked are the following. Identifiers for each are listed in bold, for
convenience.

• Valid: You will be presented with a series of word sequences.
Please indicate if they are

a nonsense sequences or
b valid sentences or valid parts of longer sentences.

• Overhear: Is this something you might plausibly overhear in
a conversation or read on the Web?

• Turing: Do you believe this sentence could have been gen-
erated by a person, or was this automatically generated by a
computer program?

• Scale: Rank the sentence, on a scale from 1 to 5, where 1 is
very semantically valid, and 5 is complete nonsense.

• Describe: Describe in your own words a situation in which
this sentence makes sense.

The motivation behind the fifth question is slightly different than the
others. In questions one through four, we ask the question directly,
in several different ways. In the fifth, we ask subjects to describe a
situation in which the sentence “makes sense.” Our goal in asking
this question is to time our subjects, and see if it takes them longer
to “make sense” of more nonsensical sentences.

The timing in this fifth question is inspired by psychological ex-
periments on human response to sensicality. Findings in the field
of psychology show that people tend to take more time to process
nonsense sentences in a self-paced reading task [8]. We found a
slight correlation between response time and answers to questions
one through four, but it was either not very pronounced, or our abil-
ity to measure it using Mechanical Turk was insufficient. The goal of
asking people to describe the context was generally to extend the en-
tire length of the task, with the hope that stretching out the duration
would cause a stronger differential to emerge.

There are many factors in reading time that we do not directly
control for. For instance, subjects are free to perform tasks as quickly
or slowly as they wish. They might walk to the refrigerator to retrieve
a beer in the middle of answering a questions. Sentence lengths are
also not precisely controlled (only roughly, to 8 to 12 words).

4. RESULTS AND ANALYSIS

We randomly generated 100 sentences using the model described
in section two. For each of the questions above, we created one
batch of 100 HITs. We asked 10 people to perform each HIT, for
$0.01 each. We found that at this rate, all 1,000 responses would be
complete in approximately four or five hours. We note that this is
only a preliminary data set; a much larger data set is planned based
on the results of this study.

The table below shows the average response obtained with each
of the five questions. For instance, using the question “valid”, a total
of 48.9% of responses tagged sentences as plausible. Similarly, for
the question “scale”, the average response value was 3.2.

Fig. 1. The top row and the bottom left plots are response histograms
for “valid”, “overhear” and “turing”. Bottom right: 3D histogram for
responses for “scale”.

Method Avg. Time % plausible
Valid 10.0 48.9

Overhear 11.9 40.9
Turing 10.0 43.2
Scale 11.7 3.2

Describe 53.9 -

More than the average time, we are interested in characterizing the
inter-annotator agreement for each of the questions.

Figure 1 shows the histogram of responses for the “valid”, “over-
hear”, “turing” and “scale” queries. In the histograms for “valid”,
“overhear” and “turing” the x-axis represents the number of respon-
dents who tagged a sentence as “plausible”, and the y-axis value of
the histogram at any x shows the number of sentences with the cor-
responding number of positive (“plausible”) responses. Ideally, all
judges would unanimously tag each sentence as either “plausible” or
“implausible”. In such a case, each of the histograms would have
two peaks, one at 0 and the other at 10. A histogram with a peak
to the center (at 5 and 6) indicates that annotators are generally un-
able to decide about the answer to the query and that the response is
random. In all figures the histogram is relatively flat, showing that
although the annotators were not unanimous in their tags, there were
some sentences for which the responses were unanimous or close to
unanimous. Overall, the histogram for the “valid” query appears to
be least humped to the middle, indicating that it may have the high-
est inter-annotator agreement. This is borne out in the inter-annotaor
agreement analysis we perform in the next subsection. In terms of
unanimous responses, the “valid” and “overhear” questions both re-
sulted in over 50% of sentences being tagged with 80% or greater
unanimity between annotators.

The bottom right panel of Figure 1 shows a three-dimensional
histogram for the query “scale”. The x-axis is the mean response to
queries, quantized to an integer between 1 and 5. The y-axis is the
standard deviation of the responses to queries, also similarly quan-
tized. The z-axis value at any (x, y) shows the number of queries
for which the mean score and standard deviation were x and y re-
spectively. If the inter-annotator agreement were high, the histogram
would be largely biased towards the left of the figure. If sentences
were largely scored as having high “plausibility” or “implausibility”,
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Fig. 2. Histogram of mean time to answer the ”describe” question.

the histogram would be biased towards the upper and lower edges of
the figure. Not surprisingly, we find that when given a sliding score,
most annotators are uncertain (with a mean score of 3.2). Also on a
numeric scale, there is greater disagreement between annotators.

Although the “describe” question elicits text responses, it is pri-
marily intended as a means of identifying the “taggability” of sen-
tences. The longer it takes for a person to respond, the harder it is
for them to justify their response. Thus, if the mean response times
is low for a sentence, it is probably clearly plausible (or implausi-
ble), but high mean response times indicate a sentence for which
this judgement is potentially fuzzy. Figure 2 shows a histogram of
the average response time for the sentences. Curiously, it shows that
when asked to describe the reason for their tagging, most annotators
took relatively short time indicating a fair degree of certainty in their
tagging.

4.1. Inter-annotator agreement

To actually quantify the inter-annotator agreement for the three bi-
nary questions, we follow the methods described in Artstein and
Poesio’s (2008) survey [9] of inter-annotator agreement for compu-
tational linguistics. For this data collection effort, we have up to ten
annotators per sentence, so we use the methods described for eval-
uating agreement among multiple annotators, in particular, multi-
π and multi-κ , which are multiple-annotator versions of William
Scott’s π coefficient, and Jacob Cohen’s κ statistic.

The raw agreement score is pairwise; that is agreement between
each pair of annotators of a sentence. Thus, if nine annotators choose
“valid” and one chooses “invalid,” we get an overall pairwise agree-
ment of 80%. The multi-π statistic assumes that annotators do not
have their own bias, but allow the categories to be non-uniformly
distributed. The multi-κ statistic allows each annotator to have his
or her own biases. We slightly modified the multi-π metric (“agree-
ment”) because unlike in a conventional data annotation scenario,
we do not have the same ten people annotating each sentence. For
completeness, we report all three measures. Intuitively, the π and κ
statistics represent proportionally how far the agreement is beyond
chance agreement, on the way to perfect agreement. We do not com-
pute inter-annotator agreement for scale and context.

Method Agreement Multi-π Multi-κ
Valid .664 .327 .329

Overhear .636 .443 .250
Turing .612 .4218 .212

The table above shows the inter-annotator agreements for the
three questions. Both the kappa and pi metrics show a “fair” degree
of agreement between annotators for all three questions. However,
the “Valid” question rates the best among all three.

For the purpose of the proposed corpus, we are particularly in-
terested in sentences in which inter-annotator agreement is high.
The table below shows inter-annotator agreement for questions when
only sentences for which a minimum of 8 annotators agreed were
considered. Not surprisingly, the inter-annotator agreements are
much higher, with values that are considered indicative of “substan-
tial” agreement for both “Valid” and “Overhear”.

Method Agreement Multi-π Multi-κ
Valid .846 .690 .693

Overhear .785 .760 .556
Turing .760 .382 .512

5. CONCLUSIONS

None of the questions are particularly superior to the others in elicit-
ing clear binary response. In general “Valid”, arguably the simplest
of the three questions, appears to generate slightly most consistent
responses. We note that sentences are often difficult to tag, as indi-
cated by responses to “scale” and “describe”. Given the difficultly
that human subjects seem to have in identifying valid sentences, it
leads one to wonder what the limitations of a computational model
for language might be. On the other hand, the differences in response
patterns to “scale” and “describe” also indicate that when annotators
are asked to articulate the reasons for their tags, they tend to be more
certain, suggesting that a deeper undelying principle may exist.

Nevertheless we believe the data set, if collected, will be
an invaluable tool for NLP researchers, particularly those work-
ing in speech recognition and MT. The near-unanimously tagged
subsets can be useful for discriminative training approaches, but
the data with uncertain tags too can be valuable for the analy-
sis of the confusions inherent in language. We expect to col-
lect a much larger tagged data set of the kind discussed here.
The current data (along with tags) are publicly downloadable from
http://mlsp.cs.cmu.edu/projects/mechanicalturk.
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