Research Interests

I work on core algorithmic aspects of computer speech recognition. My focus is on understanding, and learning from the speech signal. Specifically, on measuring and representing the information encoded in it for optimal pattern classification. Speech usually doesn't happen in isolation. Understanding general audio, it's interplay with human speech and it's contextual significance, is a vital part of my research. The final goal of my work is to enable computing machines to recognize speech better in general, and much better than currently possible in high-noise and other kinds of complex environments, using minimal external (human-generated) knowledge. On the periphery, I work on the general quest for more automation, powerful search strategies and more scaleable learning algorithms for automatic speech recognition systems.


On the voice of Anthony Hopkins in the movie Magic (1978) by Alex Best, Ace Ventriloquist, amongst other good things!


Spring 2017:
  1. Computational Forensics and Investigative Intelligence
    • CYSE-645 Hamad Bin Khalifa University (HBKU), Qatar
    • 15-498 (W) CMU Qatar
    • 15-498 (R) CMU Africa
  2. An Introduction to Knowledge based Deep Learning and Socratic Coaches
    • 11-364 CMU Pittsburgh


  • Yolanda Gao, PhD, Electrical and Computer Engineering
  • Wayne Zhao, PhD, Electrical and Computer Engineering
  • Yandong Wen, PhD, Electrical and Computer Engineering

Recent Publications

  • Voice disguise by mimicry: deriving statistical articulometric evidence to evaluate claimed impersonation, Rita Singh, Abelino Jiminez and Anders Oland, IET Biometrics, January 2017. pdf

  • more below....


Research publications (by topic)

  1. Forensics    Papers
    General theme: Forensic deductions from human voice, speech and audio signals in general. Publications in this area lag behind our current work by a couple of years at least, as we rapidly respond to the challenges posed by real crimes by creating technology that is immediately applied to the problem at hand.

  2. General audio analysis, microphone array processing, denoising, dereverberation, signal restoration    Papers
    General theme: Our approach is that of modeling the effect of highly-nonstationary noise and reverberation as compositional phenomena. Clean signals can then be recomposed from the bases of the composition. This approach differs from ones that model audio phenomena using dynamic generative models.

  3. Semi-supervised learning, structure discovery, statistical pattern recognition, classification    Papers
    These papers cover diferent topics such as learning basic units of sound from data, discovering pronunciations for words in terms of these units, selecting better classifiers using weaker classifiers iteratively in a gradient ascent solution to training good acoustic models from completely untranscribed data etc.. They also include general developments in classification techniques.

  4. Acoustic modeling, decoding, speech processing, speech recognition, adaptation, keyword spotting    Papers
    These papers relate to core and peripheral issues in speech recognition and processing for HMM-based ASR systems.

  5. Systems, applications, projects    Papers
    These papers describe systems developed or deployed for specific tasks. Also include papers from short-term student projects, technical reports and other writeups

  6. Miscellaneous    Papers
    Patents, papers on other topics such as chaos theory, radar signal design, geodynamics. From 1993-1998 I worked on these topics. Chaos and complexity theory remain my favorite hobby subjects.

Other activities

  • Associate Editor, IEEE Signal Processing Letters
  • Sphinx-4

Tracking weather

Home   Funded.Projects   Where.I.worked   Personal.pages   My.old.homepage